Showing posts with label helium. Show all posts
Showing posts with label helium. Show all posts

Monday, September 26, 2022

PureAire Introduces New Dual Oxygen/Carbon Dioxide Monitor

 PureAire Monitoring Systems is excited to introduce its new Dual Oxygen/Carbon Dioxide Monitor, an important addition to our full line of Oxygen Deficiency Monitors, Carbon Dioxide Monitors, and Combustible/Toxic Gas Detectors.  Our new Monitor is designed for continuous monitoring of oxygen and carbon dioxide levels  across a wide variety of applications, including cryogenic facilities, breweries, food processing plants, cannabis grow rooms, pharmaceutical manufacturing operations, laboratories, hospitals, and universities.

Our Dual Monitor can sample O2/CO2 levels from up to 100 feet away and is ideal for facilities that use inert gases, including, but not limited to, nitrogen, helium, and argon. Its NEMA 4X/IP66 dust-tight and water-tight enclosure will protect the Monitor against dust, water, and damage from ice formation.

PureAire’s new Dual O2/CO2 Monitor continually measures oxygen levels from 0-25%, and carbon dioxide levels from 0-50,000 parts per million (ppm), with both O2 and CO2 measurements readily visible on the Monitor’s easy-to-read backlit displays. Depending on our customers’ specific requirements, the Monitor can be linked to a programmable logic controller (PLC), a multi-channel controller, or tied into building systems themselves.

The new O2/CO2 Monitor features dual built-in LED visual alarms, two alarm level set-points for both O2 and CO2, as well as two relays for each monitored gas. The Monitor responds in seconds to changes in oxygen and carbon dioxide levels, and it will remain accurate over a wide range of temperature and humidity levels.

PureAire’s Dual Oxygen/Carbon Dioxide Monitor offers thorough air monitoring, with no time-consuming maintenance or calibration required. Built with durable, non-depleting, zirconium oxide sensor cells, and non-dispersive, infrared (NDIR) sensor cells to ensure longevity, PureAire’s Dual O2/CO2 Monitor can last, trouble-free, for 10+ years in normal working conditions.

Friday, July 15, 2022

Thermal Vacuum Chambers: A Must Have for Space Exploration

 

On October 4, 1957, the Soviet Union launched the first artificial satellite into space, thus ushering in the Space Age. Since then, over 8,000 satellites have been launchedfrom more than 50 countries. According to Jonathan McDowell, an astronomer at the Harvard-Smithsonian Center for Astrophysics, at the end of 2021 there were around 5,000 active satellites in orbit.

In addition to all of those satellites, space is currently home to a number of other pieces of equipment, including two space stations, the Hubbell and James WebbSpace Telescopes,as well as robotic equipment, including six motorized robotic vehicles(or rovers) currently on Mars.

Once launched, equipment is expensive to replace and difficult to repair if it gets lost or damaged.  In order to ensure reliability, safety, and that satellites, spacecraft, and related components will operate as intended, nearly all equipment destined for the final frontierundergo intensive testing, prior to launch, in environmentsthat replicate the conditions actually found in space.

Space is a harsh environment, and every component will be subjected to conditions unlike anything found on Earth,including microgravity, extreme hot and cold temperature cycling, ultra-vacuum atmosphere, and high-energy radiation.

Thermal Vacuum Chambers

One key aspect of the testing includes the use of thermal vacuum chambers (TVC) to replicate the ultra-cold temperatures and the airless vacuum of space.  The extreme cold and absence of air pressure in TVCs will help identify flaws or weaknesses in the equipment tested.

Thermal vacuum chambershave been used for a number of years by the aerospace industry. In fact, Thermal Vacuum Chamber A, located at NASA’s Johnson Space Center in Houston, was used to test both the Apollo spacecraft before their historic missionsto space and, following upgrades, the James Webb Telescope prior to its launch in 2021.

Once equipment to be tested is placed inside the TVC, the air is evacuated. When the air, and accompanyingair pressure,areremoved, gas trapped in materials is released, and outgassing begins to occur. The released gases, and other impuritiesinside the chamber, will begin to evaporate and may condenseon the equipment,potentially making it less accurate or even unusable.

To reduce the temperature inside the chamber, and to remove lingering gases and impurities from the chamber, TVCs typically utilize cryopumps. These pumps, located at the bottom of the chambersuse cryogenic gases, such as liquid nitrogen (LN2) or helium (He), to super-chill the air and the surfaces of the cryopump tobetween -208 Celsius and -261 Celsius.  As the air in the chamber passes over the surfaces, gases such as oxygen, nitrogen, helium, and hydrogen instantly freeze to the surfaces of the cryopump and are, effectively, removed from the chamber.

Oxygen Deprivation Risks When Using Cryogenic Gases

Clearly, liquid nitrogen and helium play a vital role in the development and testing of equipment used in space exploration. However, there are risks associated with use of LN2 and He. Liquid nitrogen and helium are oxygen-depleting gases that are both odorless and colorless. As such, absent appropriate gas monitoring equipment, personnel working near thermal vacuum chambers would likely be unable to detect LN2 or He leaks, and an accompanying decrease in oxygen.

According to the Occupational Safety and Health Administration (OSHA), an environment in which oxygen levels fall below 19.5 percent is considered an oxygen-deficient atmosphere and should be treated as immediately dangerous to health or life. When there is not enough oxygen in the air, persons working in the affected area may become disoriented, lose consciousness, or even suffocate due to the lack of sufficient oxygen.

PureAire Oxygen Monitors

PureAire Monitoring Systems’ Oxygen Deficiency Monitor offers thorough air monitoring, with no time-consuming maintenance or calibration required. Best practice calls for oxygen monitors to be installed anywhere there is a risk of gas leaks—i.e., wherever cryogenic gases, including liquid nitrogenand helium, are stored, and in all locations where these gases are used.

A screen displays current oxygen levels, for at-a-glance reading by employees, who derive peace of mind from the Monitor’s presence and reliable performance.

Built with zirconium oxide sensor cells, to ensure longevity, the Monitor can last, trouble-free, for 10+ years in normal working conditions.

In the event of a liquid nitrogen or helium gas leak,where oxygen decreases to unsafe levels, PureAire’s Monitor will set off an alarm, complete with horns and flashing lights, alerting personnel to take corrective action.

For over 20 years, PureAire Monitoring Systems has been an industry leader in manufacturing long-lasting, accurate, and reliable Oxygen Deficiency Monitors. We have dedicated ourselves to ensuring the safety and satisfaction of our clients, many of which have very sophisticated operating requirements. We are proud to note that NASA’s SOFIA-Stratospheric Observatory for Infrared Astronomy–a Boeing 747SP aircraft modified to carry a 2.7 meter (106 inch) reflecting telescope–carries onboard a PureAire Oxygen Deficiency Monitor.


Wednesday, October 28, 2020

Image is Everything: MRI and Helium Safety

 


MRI

Magnetic resonance imaging (MRI) is a diagnostic procedure that uses a combination of a very large magnet, radio waves, and a computer to produce detailed, cross-sectional, and three-dimensional images of organs and structures within the body.

An MRI scan is a valuable diagnostic tool that can show injuries or other anomalies that cannot be seen in a CT scan or X-ray.  For instance, soft tissue injuries, such as,strains, sprains, contusions, tendonitis, and bursitis can all be observed via MRI.

Moreover, according to the Mayo Clinic, MRI can also be used to diagnose a variety of brain-related and nervous system disorders, including strokes, aneurysms, multiple sclerosis, eye and inner ear problems, and spinal cord injuries. MRI is widely used in research on brain structures and functions.

How MRI Works

MRI scanning machines vary in size, shape, and degree of openness but the typical MRI machine resembles a tube (encompassing a very large magnet) with a table in the middle, which enables the patient to lie down and slide into the magnetic field created inside the machine. The magnet itself is comprised of multiple coils of connective wire through which a current is passed to generate a magnetic field. To achieve the high field strengths required for most clinical needs, the magnet is cooled with liquid helium to -452 degrees Fahrenheit (-270 Celsius). The super cold temperature applied to the magnet provides for “superconductivity”, meaning that current can pass through the magnet’s coils without electrical resistance, producing the type of strong magnetic field necessary to produce detailed images.

To ensure accurate imaging, and to preserve the integrity of the MRI scanning machine, the liquid helium must be kept extremely cold when the scanner is in operation. If the temperature of the liquid helium were to rise above the very cold levels required for superconductivity, the helium might vaporize and,with the dissipation of the liquid helium’s super-cooling properties,  the machine’s magnet could overheat, potentially causing irreparable damage to the MRI machine.

Oxygen Monitors Can Detect Helium Leaks

Helium is an odorless, colorless, oxygen-depleting gas that can rapidly displace oxygen in the air to levels below what is needed to for humans to breathe. Excess exposure to helium can cause dizziness, nausea, and loss of consciousness, and could even result in death within seconds of exposure. Because liquid helium is devoid of color and odor, MRI personnel would, absent appropriate oxygen monitoring, likely be unaware that a potentially dangerous helium leak has occurred. As such, the National Institutes of Health’s Design Requirements Manual recommends that oxygen monitors be installed in MRI treatment areas.

Proper oxygen monitoring equipment should be placed in MRI rooms, as well as in storage rooms, and in any other site where helium gas may accumulate. The monitoring equipment should include visual and audible alarms that would be activated in the event of helium leaks and a decrease in oxygen levels.



PureAire Oxygen Deficiency Monitors


PureAire Monitoring Systems’ Sample Draw Oxygen Deficiency Monitor continuously tracks levels of oxygen and will detect helium leaks before MRI machines are damaged and the health of employees and patients is put at risk.
The Monitor’s built-in pump samples oxygen from up to 100 feet away,making it ideal for use in MRI facilities, because the metal components within the Monitor are outside the imaging area and, therefore, will not interfere with the magnets that are the heart of MRI scanning machines.

PureAire’s durable, non-depleting, zirconium oxide sensor can last 10+ years in a normal environment, without needing to be replaced.

In the event of a helium gas leak, and a decrease in oxygen to an unsafe, OSHA action level, the Sample Draw Oxygen Monitor will set off an alarm, complete with horns and flashing lights, alerting staff and patients to evacuate the area. Additionally, the same alarm will alert personnel to turn off the MRI scanner in order to prevent the magnet overheating that could result in possible damage to the machine.

PureAire’s Sample Draw Oxygen Deficiency Monitor has an easy to read screen, which displays current oxygen levels, for at-a-glance observation by MRI employees, who derive peace of mind from the Monitor’s presence and reliability.







Monday, March 16, 2020

What Is Up With Helium


Helium is the second most abundant element in the universe and used across a variety of industries. Valued for more than simply filling party balloons, helium is of critical importance in many commercial applications, including high-tech, automotive, healthcare, and aerospace.

Helium Uses
For instance, the manufacture of fiber optics requires an all-helium environment to prevent air bubbles or other flaws in the delicate fibers used in cables to transmit data. Additionally, the semiconductor industry utilizes the cooling properties of helium to transfer heat away from computer chips during manufacturing.

Helium plays a key role in inflating automobile airbags and may also be used to detect leaks in car air-conditioning systems. Metal fabricators use helium for welding because of its inert properties and high heat transfer capabilities, which make it the perfect shielding gas (an inert or semi-inert gas that protects the weld from oxygen and water) for welding materials with high heat conductivity, such as copper, magnesium alloys, and aluminum.

In the medical field, helium is used to cool the superconducting magnets in MRI (magnetic resonance imaging) and NMR (nuclear magnetic resonance) equipment, to treat medical conditions such as asthma and emphysema, andfor laparoscopic surgery.

NASA uses helium as an inert purge gas for hydrogen systems and as a pressurizing agent for ground and flight fluid systems, as well as a cryogenic agent for cooling various materials. Moreover, as in the automotive sector, helium is likewise used in precision welding applications in aerospace manufacturing.

Staying Safe While Working with Helium
Since helium is odorless and colorless, it has no early warning properties. Helium can displace oxygen in the air to levels below what is needed for humans to breathe. Exposure to helium can cause dizziness, nausea, and loss of consciousness. Absent proper oxygen monitoring, unconsciousness, and even death may occur in seconds. The National Institutes for Health recommends installing oxygen monitors anywhere compressed gases, such as helium, are stored or used.

PureAire Monitors
PureAire Monitoring Systems’ oxygen deficiency monitors continuously track levels of oxygen and will detect helium leaks before the health of employees is put at risk. Built with zirconium oxide sensor cells, to ensure longevity, PureAire’s O2 deficiency monitors can last, trouble-free, for over 10 years under normal operating conditions. In the event of a helium gas leak, and a decrease in oxygen to an unsafe, OSHA action level, the monitor will set off an alarm, replete with horns and flashing lights, alerting staff and users to evacuate the area.

Each PureAire O2 monitor has an easy to read screen, which displays current oxygen levels, for at-a-glance readings by employees, who derive peace of mind from the monitor’s presence and reliability.

Tuesday, October 2, 2018

Gas Distributors and Specialty Gas Suppliers Are the Key to Technology Companies



The technologies that power laptops, smartphones, LED televisions, and other technologies rely on one hidden ingredient: Gas. Compressed and inert gases help create a pure environment, control the temperature, and carry other substances for a high-quality end product. See how the different gases used play a pivotal role in technology product development and also how they introduce health and safety risks into the workplace. 

Compressed Gases Used in Technology Devices 

The most common compressed gases used in technologies include argon (Ar), helium (He), and nitrogen (N2). 
Liquid and gas helium have a range of uses in science, laboratory, manufacturing, and technology settings. Within the semiconductor industry, helium keeps the manufacturing environment pure so that no unwanted chemical reactions occur. Since helium conducts heat efficiently, it stabilizes the temperature when silicon is introduced in the semiconductor manufacturing process. Helium's ability to cool quickly aids in a range of uses, from chilling semiconductor wafers to keeping an MRI magnet cool.  

Nitrogen (N2) gas aids with the liquidous stage of semiconductor manufacturing, where the solder is wetting the surface to create a good bond. Since nitrogen flushes out oxygen, it's also used during the purging process. 

Some semiconductor manufacturing facilities have opted for nitrogen generations onsite rather than N2 delivery from a commercial gas supplier. Since nitrogen is one component of air, it can be distilled for purity onsite using a generator. 

Like helium (He) and nitrogen, argon or Ar is inert. This gas is introduced in the sputtering phase of semiconductor manufacturing. Since argon maintains a highly pure environment, it prevents silicon crystals used in semiconductors from developing impurities. 

To source these gases, semiconductor, LED, and other manufacturers turn to compressed gas providers, who offer on-demand delivery of combustible gases. The chief gas distributors include Praxair, Airgas, Air Liquide, Linde, Matheson Tri-gas, and BOC.

The Hidden Dangers of Specialty Gas

While these specialty gases are highly useful, there is a danger associated with their use. Helium, nitrogen, and argon all deplete oxygen from the air. In the manufacturing process, this is a desired trait. Oxygen can cause flaws in the final product. 

Where trouble starts is when leaks occur and the specialty gas escapes into a closed room. Leaks can develop in supply lines, storage canisters, or nitrogen generators. These gases have no scent or color, so employees would not see or smell an argon leak. 

Within minutes of a leak, oxygen levels can fall from typical levels to deficient levels, which means that the air in the environment does not have enough oxygen for respiration. Employees can experience fatigue, dizziness, cognitive confusion, and respiratory distress. A few breathe of oxygen deficient air can render someone unconscious. Once an employee loses consciousness, the risk is death via asphyxiation. 
By tracking levels of oxygen using an oxygen monitor, employers can prevent workplace accidents and injuries and protect the well-being of their employees. An oxygen deficiency monitor tracks oxygen levels 24/7 and provides fast notification if oxygen levels plummet due to an inert gas leak. 

Just as these gases can leak in the semiconductor manufacturing plant, they can leak at the gas distributor as well. Leaks arise when storage equipment and supply lines develop holes, when storage dewars are not properly sealed, or when the equipment is used in a manner for which it was not originally intended or designed.

While end manufacturers are well aware of the risks of an oxygen deficient environment, there is less talk of the need for protection in gas distribution facilities. Wherever He, Ar, and N2 are used or stored, oxygen monitors should be installed as a precaution. 

How an Oxygen Deficiency Monitor Works

An oxygen deficiency monitor has a built-in alarm to provide LED and sound alert when oxygen levels fall to the critical defined threshold, which is 19.5 percent. PureAire's monitors work in confined spaces, including basements and freezers, and function at temperatures of -40 C. PureAire's oxygen monitors are built to withstand 10+ years of use without subjectivity to barometric pressure shifts or temperature changes. The zirconium sensor needs no annual maintenance or calibration.

If you're looking for a reliable product that is easy to use out of the box, consider PureAire's O2 monitor. Learn more about PureAire's oxygen deficiency monitor or read customer testimonials at https://www.pureairemonitoring.com or www.oxygenmonitors.com

Source:

http://summitsourcefunding.com/blog/helium-is-a-critical-part-electronics-supply-chain 
https://www.onsitegas.com/semi-conductor-nitrogen.html

Thursday, January 18, 2018

Gas Chromatography and Breathe Safely While Using Nitrogen



Gas chromatography is a process used to separate chemical compounds for analysis. The analytical chemistry process is used with gases that won't decompose when vaporized. Gas chromatography are used in a wide range of industries -- everything from forensic science to medical marijuana. While the procedure is highly useful, there are risks when working with nitrogen gas. Learn how gas chromatography works, the role nitrogen plays, and how an oxygen sensor improves safety. 

How Gas Chromatography Work

In chromatography, one gas moves over the sample substance. The moving gas is known as the mobile phase, and it's usually an inert gas, such as nitrogen or helium. As the mobile phase passes over the substance, it separates out into its component parts. Since accuracy is key, it's vital that the moving gas not react with the substance being analyzed. For this reason, inert gases are recommended for gas chromatography.

Gas chromatography takes place within a special machine, known as a gas chromatograph machine. The substance being studied is injected into the chromatograph with a syringe, then the material is heated to the vapor stage. The carrier gas -- e.g. nitrogen -- is then added to the chromatograph to push the sample up the central column. As the substance being analyzed passes up the column, it's absorbed by the carrier and then separated into its distinct components. The components emerge from the column and pass through a detector, where they are identified and noted on a chart.

When the process is complete, every part of the mixture is identified. At this point, for instance, a forensic scientist will have the raw data needed to analyze evidence found at the crime scene. While television shows may portray the process as instant, it's often time-consuming.

Within the medical marijuana industry, scientists are using gas chromatography to test for pesticide residue in cannabis. While the medical marijuana industry is still young, and pesticide levels are not heavily regulated, industry leaders expect this to change as the marijuana industry grows. Thus, the use of gas chromatography to check for pesticides will grow too.

Whenever gases is used in the chromatography process, there's a potential for gas leaks, whether from the supply lines, storage tanks, or from the chromatograph itself. Nitrogen gas displaces oxygen. If nitrogen were to leak, air levels would become deficient of oxygen and employees could suffer health problems. 

Since nitrogen gas has no color or odor, there is no way for lab staff to tell that the gas has leaked. The best way to safeguard the lab is with an oxygen monitor. 

How an Oxygen Deficiency Monitor Protects Employees 

Risks of breathing oxygen deficient air include dizziness, fatigue, unconsciousness, and death via asphyxiation. All it takes is a couple breaths of air to experience adverse health effects. 
Since there is no way to tell whether a leak has occurred, it's necessary to use an oxygen sensor to track oxygen levels at all times. The oxygen monitor or sensor measures oxygen and only reacts when levels fall below a predefined threshold. Oxygen sensors from PureAire have alarms for oxygen levels of 18 percent and 19.5 percent, for instance. 

The oxygen deficiency monitor includes a flashing light and loud alarm, so that staff and passerby receive prompt notification of the leak. When the alarm goes off, employees can vacate the premises and contact emergency personnel. 

Given the serious risks posed by a nitrogen gas leak, it's important to use oxygen deficiency monitors anywhere inert gases are stored or used. 

PureAire is an industry leader when it comes to oxygen monitors. O2 monitors from PureAire are designed for long-lasting and maintenance-free use. They feature a zirconium sensor, which lasts for 10-plus years without calibration. PureAire's monitors can handle temperature changes, barometric shifts, and even freezing temperatures. Learn more about PureAire's monitors and how they promote safety at 

Wednesday, November 15, 2017

The Overview on Inert Glove Boxes and How They Work


For businesses that work with inert gases or hazardous materials, glove boxes are essential. They allow employees to safely work with sensitive or hazardous materials without compromising either the material or their safety. While glove boxes are an effective solution to handling inert and hazardous materials, they are not failsafe. To ensure there are no leaks in the glove box, it's critical to pair a glove box with an oxygen monitor. 

How a Glove Box Works 

A glove box, sometimes known as a dry box, is a large box with at least one window and two ports. The ports allow workers wearing arm-length gloves to place their hands inside the inert environment, where they can work with hazardous materials or inert gases, such as argon or nitrogen. 

The interior of the glove box is filled with an inert gas -- usually nitrogen, although it could be argon or helium if the materials used inside the box react with nitrogen. While the glove box environment is intended to be closed, small amounts of oxygen can seep through the glove ports. Thus, it's essential that the glove box be purged nightly. 

There's an antechamber on one side of the glove box. This allows you to place materials in the chamber, then open the interior door and bring them into the glove box environment. To prevent the insert gas inside from seeping out through the antechamber, you must never have both the interior and exterior door open at the same time. 

Inert gases, such as nitrogen and argon, displace oxygen. If these gases were to leak into the air via the antechamber doors or through a hole in a defective glove box, it would push oxygen out of the room. Oxygen levels would begin to drop, eventually falling below the OSHA threshold. 

When oxygen levels drop below the OSHA threshold, it can cause respiratory and cognitive problems, as well as death via asphyxiation. To protect employee safety in a glove box environment, it's critical to use oxygen monitors onsite. 

How an Oxygen Monitor Protects Your Workers 

While your staff might see the antechamber doors open and understand that a leak has occurred, most leaks are undetectable until it is too late. 

Inert gases have no color or odor, so there is no way for someone working onsite to know at a glance or sniff there's been a leak. Meanwhile, the air in the room would slowly lose oxygen, eventually leading to an oxygen deficient environment that places your employees at risk of death by asphyxiation. 
A wall-mounted oxygen monitor samples room air 24/7. The monitor remains silent if there's sufficient air in the room. If there is a leak of nitrogen, for example, and oxygen levels fall, the monitor will sound an alarm and flash lights, so workers can see and hear there is a problem. 

Your employees will be able to leave the room before suffering adverse health effects. Staff will also be able to complete shifts with less stress when they know the environment is safe, because they trust the oxygen monitor is working properly. 


PureAire's oxygen monitors feature long-lasting zirconium sensors. Once installed, these oxygen monitors measure the oxygen in the air for 10 or more years, without needing annual calibration or maintenance. The monitors are unaffected by sudden shifts in barometric pressure or thunderstorms. The digital display provides legible, updated oxygen readings so employees can check ambient oxygen levels. PureAire's oxygen monitors can be used in confined spaces and in temperature extremes as low as -40 Celsius. All PureAire oxygen monitors come with a three year warranty for your protection. Review specifications or learn more about oxygen monitors from PureAire by visiting www.pureairemonitoring.com

Tuesday, August 1, 2017

Oxygen Monitors now Required for Nitrogen, Argon, Helium, and CO2 use in Denver


Oxygen Monitors now Required for Nitrogen, Argon, Helium, and CO2 use in Denver

The Colorado city of Denver recently passed a new law that requires facilities that use insert gas to install oxygen deficiency monitors wherever these gases are used in excess of 100 pounds. Learn what the new law requires from businesses and how an oxygen sensor protects your employees, your business, and your peace of mind. 

What Denver's New Law Requires 

The law specifically applies to Colorado commercial, industrial, or manufacturing facilities that use inert gases, including nitrogen, argon, carbon dioxide, and helium. Facilities covered by the new law include water treatment plants, laboratories, and food processing plants. 
Fire suppression systems and medical gas systems are not covered by the Denver law. 
Under the new law: 
  • Inert gas storage tanks must be placed in approved locations, whether stored inside or outside of the building 
  • Storage containers must be secured to prevent tip-overs
  • All valves and tubing used with the gas system must meet applicable standards
  • Gases must vent outside the building
  • All areas where gas is used must either have an oxygen deficiency monitor or continuous ventilation system, which keeps the oxygen levels in the room steady 
  • Oxygen alarms should be visually inspected daily by trained staff members
  •  Storage tanks, piping, and other parts of the system must be checked on a monthly basis 
  • Tests of the system must be conducted regularly with either air or an inert gas
The Denver law sets out regulations for the type of oxygen deficiency monitor, plus where and how to use them. Acceptable monitors must be installed in any location where an inert gas leak could result in an oxygen deficient environment where public health could be at stake. 
Oxygen detectors must be on an approved device list and directly connected to the electrical supply and fire alarm system for the site. The oxygen detectors must be permanently mounted to the wall at a height which is consistent with the given gas's vapor density, so they can work properly. The devices must be located within their specified ranges of operation, in order to ensure the monitors can work as intended. 

The law prohibits self-zeroing or auto calibrating devices, unless they can be spanned or zeroed to check that the oxygen monitor is working as it should be. All installed oxygen monitors must be calibrated regularly to ensure safe and reliable operation. 

Alongside mounted alarms, companies must place signage that notifies employees of the oxygen monitor and gives instructions for what to do in the event of an alarm. Typical instructions tell staff to leave the building and call 911 if the alarm is going off. 

Signs notifying employees of the risk for oxygen deficiency must be posted anywhere inert gas is stored or used.

To further protect employees, the Denver law mandates that gas be transported, filled, or moved only by qualified individuals who follow protocol. All equipment, including piping systems, must be inspected for competency and the organization must maintain records for a period of three years. 

Why an Oxygen Monitor is a Practical Suggestion 

Oxygen deficient environments occur when an inert gas, such as helium, nitrogen, or argon, escapes into the environment and begins to displace oxygen. Since these gases have no odor or color, there is no way that staff working in the room can tell something is leaking. As the oxygen levels fall, employees can experience confusion and respiratory distress, resulting in death by asphyxiation. 
An oxygen monitor tracks ambient levels of oxygen and sets off an alarm when oxygen levels fall below the safe threshold, thus protecting employee safety. Since employees can both hear and see the alarm, they will know there is a problem even if they are operating loud equipment that overrides the noise of the sensor. 

Oxygen monitors are simple solutions to pressing problems faced by organizations that rely on inert gases and want to mitigate their risk. 

PureAire's oxygen sensors are cost-efficient and high quality. They are designed with a zirconium sensor, which is capable of lasting for as long as 10 years. PureAire's oxygen sensor is accurate in diverse environments, from storage freezers to basements. The sensor functions between -40 and 55 C. While PureAire's oxygen monitors do not need to be calibrated, they are capable of calibration, thus eligible for use in Denver. 

PureAire's monitors need little maintenance to work reliably once they are installed using the included wall-mounting brackets, and they are not affected by changes in the barometric pressure, a known problem with other types of oxygen sensors. PureAire's products can be set to measure oxygen levels of either 18 percent or 19.5 percent (which is the OSHA action level), to comply with standards. 

To learn more about oxygen monitors from PureAire, and view specifications, go to www.pureairemonitoring.com.

Wednesday, September 14, 2016

The Path to Safety for Pharmaceutical and Laboratories: Why O2 Deficiency Monitors May be Required?



To safeguard against gas leaks in pharmaceutical industries and laboratories, businesses are turning to oxygen deficiency monitors. Learn when, where, and why an oxygen monitor or O2 monitor may be required.

Oxygen Monitors in Medical and Pharmaceutical Settings

In the hospital setting, nitrogen gas is widely used. During surgeries, nitrogen powers equipment and preserves blood and tissues. Nitrogen gas is also used to freeze and destroy tissue. 

Hospitals work with other gases, such as carbon monoxide, for lung diffusion testing and culturing. Laboratories growing cultures for analysis, testing, and research require that the tissue samples be grown under strict environmental conditions. Medical gases can control the environment to ensure that tissue samples are not contaminated by any sort of bad bacteria. 

Magnetic resonance imaging machines use nitrogen gas to cool the magnet and keep the machine working properly. As such, it is critical to have an oxygen monitor in an MRI room to protect the safety of patients in the MRI machine and technicians performing the MRI. In 2000, a technician was killed and several others were injured when nitrogen escaped from the closed chamber and into the room. 

Pharmaceutical facilities also rely on nitrogen gas for multiple uses. Since the gas can keeps oxygen out of an environment, it can ensure the purity of a chemical compound or preserve the longevity of a packaged medical product. Nitrogen is also kept on hand as a natural fire suppressant and purifier. Nitrogen gas generators allow pharma plants to access nitrogen gas on demand for a low cost. 

How an Oxygen Deficiency Monitor Protects Workers in Laboratories, Hospitals, and Pharma

Staff and patients in hospitals, pharma, and laboratories need to stay safe. By installing an O2 monitor in any rooms where potentially harmful gases are used, employers can safeguard their workers' and their patients' air quality. 

The wall-mounted monitors continually check the levels of oxygen in the air. As long as oxygen levels are above the minimum amount, the alarm remains silent. If a gas like nitrogen were to leak in MRI rooms or lab storage facilities, the amount of oxygen in the air would begin to drop. Once oxygen fell to the minimum safe level, the alarm would go off, warning staff of the problem. Staff could then leave the room and evacuate patients. 

While these devices are important to protect public safety, they also keep the facility in compliance with the law. Hospitals, medical, and pharma facilities are required to install oxygen monitors where potentially hazardous gases are used. 


Since medical and pharma settings may store and use gases in many locations, multiple oxygen monitors may be needed. PureAire's oxygen sensors can last for 10 years with no maintenance. Our quality oxygen deficiency monitors are of the highest quality, to provide peace of mind and total protection in medical and pharmaceutical settings. Learn more about the line of oxygen monitors offered by PureAire at www.pureairemonitoring.com.