Showing posts with label carbon dioxide. Show all posts
Showing posts with label carbon dioxide. Show all posts

Monday, September 26, 2022

PureAire Introduces New Dual Oxygen/Carbon Dioxide Monitor

 PureAire Monitoring Systems is excited to introduce its new Dual Oxygen/Carbon Dioxide Monitor, an important addition to our full line of Oxygen Deficiency Monitors, Carbon Dioxide Monitors, and Combustible/Toxic Gas Detectors.  Our new Monitor is designed for continuous monitoring of oxygen and carbon dioxide levels  across a wide variety of applications, including cryogenic facilities, breweries, food processing plants, cannabis grow rooms, pharmaceutical manufacturing operations, laboratories, hospitals, and universities.

Our Dual Monitor can sample O2/CO2 levels from up to 100 feet away and is ideal for facilities that use inert gases, including, but not limited to, nitrogen, helium, and argon. Its NEMA 4X/IP66 dust-tight and water-tight enclosure will protect the Monitor against dust, water, and damage from ice formation.

PureAire’s new Dual O2/CO2 Monitor continually measures oxygen levels from 0-25%, and carbon dioxide levels from 0-50,000 parts per million (ppm), with both O2 and CO2 measurements readily visible on the Monitor’s easy-to-read backlit displays. Depending on our customers’ specific requirements, the Monitor can be linked to a programmable logic controller (PLC), a multi-channel controller, or tied into building systems themselves.

The new O2/CO2 Monitor features dual built-in LED visual alarms, two alarm level set-points for both O2 and CO2, as well as two relays for each monitored gas. The Monitor responds in seconds to changes in oxygen and carbon dioxide levels, and it will remain accurate over a wide range of temperature and humidity levels.

PureAire’s Dual Oxygen/Carbon Dioxide Monitor offers thorough air monitoring, with no time-consuming maintenance or calibration required. Built with durable, non-depleting, zirconium oxide sensor cells, and non-dispersive, infrared (NDIR) sensor cells to ensure longevity, PureAire’s Dual O2/CO2 Monitor can last, trouble-free, for 10+ years in normal working conditions.

Friday, March 12, 2021

When Freshness Counts – Modified Atmosphere Packaging

 


Centuries ago, merchants and shippers would place a lit candle inside barrels used to store biscuits before closing the lid. The idea was that the candle flame would deplete the oxygen inside the barrel to help keep the biscuits from spoiling. These days, the candle flame has been replaced by processes called Modified Atmosphere Packaging (MAP), which can be either active or passive. By altering the atmosphere inside food product packages, or by using specialized packaging films, today’s food processors can preserve freshness and taste; extend shelf-life; prevent oxidation, which can lead to food spoilage; and protect against crushing the food contents inside the packaging, all without the use of chemical additives, stabilizers, or even candles.

Why Use Modified Atmosphere Packaging?

Consumers want food that not only looks, tastes, and smells good, but is also convenient and lasts longer than a few days after purchase. In order to satisfy consumers, food packagers need to eliminate or, at least, control factors that contribute to food spoilage, including improper levels of moisture, temperature, or light; excessive oxygen (i.e., oxidation); and the growth of microorganisms (such as mold or pathogens that can lead to food-borne illnesses).

Spoiled food means lost revenues and lower profits for producers and intermediaries, higher food prices passed on to the consumer, and an environmental burden, as food waste reportedly contributes to some 8% of global greenhouse gas emissions.

How Does MAP Work?

Active modified atmosphere packaging works by changing the atmosphere inside food packaging, typically by the introduction of gases. For instance, carbon dioxide is often used to remove oxygen from inside the packaging of breads and other baked goods, in order to keep the products from going stale, prevent mold growth, and extend shelf-life.

Packaged foods with high-fat content, such as certain cheeses or fish high in fatty acids, require a high concentration of carbon dioxide to prevent mold growth and to prevent the cheese or fish from tasting rancid. However, excessive levels of carbon dioxide can make certain foods taste sour. To prevent that from occurring, food packagers may elect to use nitrogen, or a mixture of gases, instead of carbon dioxide alone.

Conversely, while certain meat, fish, and poultry require that all or almost all oxygen be removed from inside packaging and replaced with carbon dioxide and/or nitrogen to prevent microbial growth and spoilage, oxygen is actually added to some packaged meats, low-fat fish, and shellfish to prevent fading or loss of color, as well as to inhibit the growth of certain types of bacteria.

Adding nitrogen gas to packaging not only helps salty snack foods stay crispy and fresh by displacing the oxygen inside food packaging, but it also helps protect the contents from getting crushed or broken during transport of the products from manufacturing facilities to stores and, ultimately, to consumers’ pantries.

Fresh fruits and vegetables are often packaged by using a passive form of MAP which includes specialized, permeable packaging films. The permeable film allows the fresh produce to continue to respire (that is, breathe) after being harvested, but at a much slower rate than if it were still on the plant. Low oxygen levels, combined with carbon dioxide or nitrogen, help to preserve the freshness, taste, and appearance of fresh fruits and vegetables.

Proper Monitoring Can Preserve Food Products and Protect Packaging Personnel

Balancing the correct mixture of oxygen, carbon dioxide, and nitrogen is vital when it comes to food packaging. Too much or too little of a required gas can lead to foods that have unappetizing taste, smell, or appearance and, in baked goods, can promote mold growth, and staleness.

Moreover, food packagers and others working around carbon dioxide and nitrogen need to be aware of the potential safety risks associated with these odorless and colorless oxygen-depleting gases. According to the Occupational Safety and Health Administration (OSHA), an environment in which oxygen levels fall below 19.5 percent is considered an oxygen-deficient atmosphere and should be treated as immediately dangerous to health or life. When there is not enough oxygen in the air, persons working in the affected area may become disoriented, lose consciousness, or even suffocate due to the lack of sufficient oxygen.

Because carbon dioxide and nitrogen are devoid of odor and color, individuals working around these gases might well, in the absence of appropriate monitoring equipment, be unaware that a safety risk situation has developed.

PureAire Monitors

PureAire Monitoring Systems’ Dual Oxygen/Carbon Dioxide Monitor offers thorough air monitoring, with no time-consuming maintenance or calibration required. A screen displays current oxygen and carbon dioxide levels for at-a-glance reading by food packaging employees, who derive peace of mind from the Monitor’s presence and reliable performance.

In the event of a carbon dioxide or nitrogen gas leak, and a decrease in oxygen to an unsafe level, PureAire’s Monitor will set off an alarm, complete with horns and flashing lights, alerting personnel to evacuate the area.

PureAire’s Dual Oxygen/Carbon Dioxide Monitor is well-suited for facilities where gases such as carbon dioxide and nitrogen are used. Our Dual O2/CO2 monitor includes both a non-depleting, zirconium oxide sensor cell, to monitor oxygen levels, and a non-dispersive infrared (NDIR) sensor cell, to monitor carbon dioxide levels. PureAire’s O2/CO2 monitors can last, trouble-free, for over 10 years under normal operating conditions.



Tuesday, December 8, 2020

Air Delivery of Super-Cooled COVID-19 Vaccines


There are several potential COVID-19 vaccines that may soon be available for widespread distribution. In particular, the United Kingdom has recently approved Pfizer’s vaccine, and the U.S. Food and Drug Administration is considering extending Emergency Use Authorization to the Pfizer and Moderna vaccines.

That is certainly promising news, but storage, transportation, and delivery of these potentially game-changing vaccines will be quite challenging, with the CEO of the International Air Transport Association describing the distribution of COVID-19 vaccines as “the largest and most complex logistical exercise ever” undertaken.

It is not just the huge numbers (literally, in the billions of doses) and vast geographic scope (worldwide, requiring delivery to every country on the planet) that make the COVID-19 vaccine distribution task so daunting, but both the Pfizer and Moderna vaccines must be stored and transported in strict climate-controlled environments (reportedly, at some -70 degrees Celsius for Pfizer, and -20 degrees Celsius for Moderna) as integral parts of the vaccines’ “cold chains.”

COVID-19 Vaccine Cold Chain

The U.S. Centers for Disease Control (the “CDC”) describes a cold chain as a temperature-controlled supply chain that includes all vaccine-related equipment and procedures. The vaccine cold chain begins with a cold storage unit at the vaccine manufacturing plant, extends to the transport and delivery of the vaccine (including proper storage at the provider facility), and ends with the administration of the vaccine to the patient. A breakdown in protocols anywhere along the cold chain could reduce the effectiveness of, or even destroy, a vaccine.

Given the extreme cold temperatures required within their cold chains by the Pfizer and Moderna vaccines (and, perhaps, other COVID-19 vaccines that may now be under development by other firms), various companies within the vaccine delivery network (including temperature-controlled container manufacturers, logistics specialists, storage facility operators, commercial airlines, and dry ice producers) have been hard at work for months to meet the challenges associated with safely storing and transporting billions of vaccine doses once, as now appears to be at hand, they finally become available for international distribution.

Creating Super-Cold Environments

Dry ice, which is the common name for solid (i.e., frozen) carbon dioxide, is often used in cold chains to maintain the very cold temperatures required to keep certain vaccines viable. At a temperature of approximately -78.5 degrees Celsius (equating to -109.3 degrees Fahrenheit), dry ice is significantly colder than frozen water (that is, conventional ice), making it ideal for transport and storage of those vaccines which require an extremely cold temperature environment.

Safety precautions are critical when shippers use dry ice in the transportation and storage of vaccines. Unlike conventional ice, dry ice does not melt into a liquid. Instead, dry ice “sublimates” (changes from a solid to a gas state), turning into carbon dioxide gas. In poorly ventilated, confined spaces, such as storage rooms, railway cars, trucks, and cargo holds in airplanes, carbon dioxide can build up, creating a potentially serious health risk to transportation workers, including ground and flight crews.

Certain vaccine manufacturers may elect to ship their vaccines in multi-layered, storage canisters chilled with liquid nitrogen, rather than dry ice. We note that the potential health risks associated with nitrogen leaks are similar to those that may be caused by dry ice sublimation.

Oxygen Deficiency Risks Associated with Super-Cooled Environments

Carbon dioxide (as is nitrogen) is an oxygen-depleting gas that is both odorless and colorless. As such, absent appropriate monitoring, personnel working with the transportation of COVID-19 and other vaccines kept frozen with dry ice or liquid nitrogen likely would be unable to detect if dry ice were to sublimate (causing CO2 levels to rise), or if there were a nitrogen gas leak, and an associated decrease in oxygen.

According to the Occupational Safety and Health Administration (OSHA), an environment in which oxygen levels fall below 19.5 percent is considered an oxygen-deficient atmosphere and should be treated as immediately dangerous to health or life. When there is not enough oxygen in the air, persons working in the affected area may become disoriented, lose consciousness, or even suffocate due to the lack of sufficient oxygen.

FAA Guidance/Increased Air Shipment Capacity/Risk Mitigation

On May 22, 2009, the U.S. Federal Aviation Administration (the “FAA”) issued Advisory Circular No. 91-76A to specifically address the risks associated with the sublimation of dry ice aboard aircraft and, historically, the FAA has permitted even widebody aircraft to carry only relatively small amounts (typically not exceeding 1-1.5 tons per flight) of dry ice in refrigerated and insulated containers.

However, The Wall Street Journal (the “WSJ”) reported on November 29, 2020, that, in order to maintain the ultra-cold temperatures required by Pfizer’s COVID-19 vaccine, United Airlines has recently sought, and obtained, FAA approval to carry up to 15, 000 pounds (7.5 tons) of dry ice per flight. In a December 2, 2020 interview with CNN, Josh Earnest, Chief Communications Officer with United Airlines, noted that the FAA approval will allow United to ship as many as 1.1 million doses of COVID-19 vaccines on each flight of its commercial 777 airplanes.

Notwithstanding the FAA’s relaxation of dry ice weight limits to permit United Airlines to help bring the COVID-19 pandemic under control, it remains focused on risks associated with air shipments of dry ice. In its November 29, 2020 reporting, the WSJ noted that “regulators restrict the amount of dry ice that can be carried on passenger jets because they typically lack the equipment to monitor and mitigate any leaked carbon dioxide.”

Fortunately, by utilizing a top-quality oxygen-deficiency monitor, vaccine storage and transportation personnel, including flight crews, can safely track levels of oxygen and detect (and react to) potentially dangerous low oxygen levels, whether caused by dry ice sublimation or a nitrogen gas leak.

PureAire Monitoring Systems, Inc.

PureAire Monitoring Systems’ Oxygen Deficiency Monitor offers thorough air monitoring, with no time-consuming maintenance or calibration required. A screen displays current oxygen levels, for at-a-glance reading by crew members, who derive peace of mind from the Monitor’s presence and reliable performance.

Built with zirconium oxide sensor cells, to ensure longevity, the Monitor can last, trouble-free for 10 years in normal working conditions.

Our Oxygen Deficiency Monitor does not rely on the partial pressure of oxygen to operate, meaning that the Monitor is not affected by the changing pressure inside an aircraft due to altitude changes. In the event that dry ice begins to sublimate (causing carbon dioxide levels to rise), or if there is a nitrogen leak, and oxygen decreases to unsafe levels, PureAire’s Monitor will set off an alarm, complete with horns and flashing lights, alerting flight personnel to take corrective action.

For over 20 years, PureAire Monitoring Systems has been an industry leader in manufacturing long-lasting, accurate, and reliable Oxygen Deficiency Monitors. We have dedicated ourselves to ensuring the safety and satisfaction of our clients, many of which have very sophisticated operating requirements. We are proud to note that NASA’s SOFIA-Stratospheric Observatory for Infrared Astronomy--a Boeing 747SP aircraft modified to carry a 2.7 meter (106 inch) reflecting telescope--carries onboard a PureAire Oxygen Deficiency Monitor.


Tuesday, November 17, 2020

Don't Throw Away Your Shot...the Cold Truth About Vaccine Handling and Storage

 


In modern times, vaccines have been widely used to keep people healthy by protecting them from serious illnesses and diseases. Worldwide, vaccines annually prevent millions of deaths, and their utilization is responsible, in many parts of the globe, for the nearly total eradication of numerous diseases, including polio, measles, and smallpox.

According to the U.S. Centers for Disease Control (the "CDC"), a vaccine for a specific disease stimulates an individual's immune system, causing it to produce antibodies to counteract the antigens associated with the disease in question, just as one's immune system would do if one were actually exposed to the disease. The concept is that, after getting vaccinated, the inoculated patient develops immunity to the disease without first having to contract it. Unlike medicines, which are used to treat or cure diseases, vaccines are intended to prevent them.

Handling and Storage of Vaccines

Developing a vaccine can take years before it is deemed safe for human use and, thereafter, manufactured and made available for widespread distribution and inoculation. Throughout the manufacturing and  distribution process, and up to the time of administration, a vaccine must be kept in strict climate-controlled environments, collectively referred to as the "cold chain." The CDC describes a cold chain as a temperature-controlled supply chain that includes all vaccine-related equipment and procedures. The vaccine cold chain begins with a cold storage unit at the vaccine manufacturing plant, extends to the transport and delivery of the vaccine (including proper storage at the provider facility), and ends with the administration of the vaccine to the patient. A breakdown in protocols anywhere along the cold chain could reduce the effectiveness of, or even destroy, a vaccine.

According to FedEx, while most vaccines have traditionally been transported in a cold temperature range of 2 degrees Celsius to 8 degrees Celsius, certain vaccine manufacturers and pharmaceutical firms require a much lower temperature range within the cold chain associated with specific vaccine products.

Dry ice, which is the common name for solid (i.e., frozen) carbon dioxide, is often used in cold chains to maintain the very cold temperatures required to keep certain vaccines viable. At a temperature of approximately -78.5 degrees Celsius (equating to  -109.3 degrees Fahrenheit), dry ice is significantly colder than frozen water (that is, conventional ice), making it ideal for transport and storage of those vaccines requiring an extremely cold temperature environment.

Safely Tracking Carbon Dioxide Levels When Working with Dry Ice

Safety precautions are critical when shippers use dry ice in the transportation and storage of vaccines. Unlike conventional ice, dry ice does not melt into a liquid. Instead,  dry ice "sublimates" (changes from a solid to a gas state), turning into carbon dioxide gas. In small, poorly ventilated spaces, such as storage rooms and closets, cargo vans, trucks, and airplanes, carbon dioxide can build up, creating a potentially serious health risk.

Carbon dioxide is an oxygen-depleting gas that is both odorless and colorless. As such, absent appropriate monitoring, workers involved with the transportation and/or storage of products frozen with dry ice likely would be unable to detect if dry ice were to begin to sublimate, with carbon dioxide gas levels possibly rising to unsafe levels. When there is not enough oxygen in the air, persons working in the affected area may become disoriented, lose consciousness, or even suffocate due to the lack of oxygen

Fortunately, by utilizing a top-quality oxygen monitor, also known as an oxygen deficiency monitor, vaccine transportation storage personnel can track oxygen levels and detect (and react to) dangerous carbon dioxide levels before employee health is jeopardized.

PureAire Dual Oxygen/Carbon Dioxide Monitor

PureAire Monitoring Systems' Dual Oxygen/Carbon Dioxide Monitor offers thorough air monitoring, with no time-consuming maintenance or calibration required.  A screen displays current oxygen and carbon dioxide levels, for at-a-glance reading by employees, who derive peace of mind from the Monitor's presence and reliable performance.

In the event that dry ice begins to sublimate, causing carbon dioxide levels to rise, and oxygen to decrease to unsafe levels, PureAire's Monitor will set off an alarm, complete with horns and flashing lights, alerting personnel to evacuate the area.

Our Dual Oxygen/Carbon Dioxide Monitor is well-suited for industries where dry ice is used, such as in the handling, transportation, and storage of life-saving vaccines. The Monitor includes both a non-depleting, zirconium oxide sensor cell, to monitor oxygen levels, and a non-dispersive infrared (NDIR) sensor cell, to monitor carbon dioxide levels. Known for their dependability, PureAire's O2/CO2 Monitors can last, trouble-free, for over 10 years under normal operating conditions.



Tuesday, November 10, 2020

Brewers Safely Capture and Reuse Carbon Dioxide

 


Brewing beer produces carbon dioxide (CO2), especially during fermentation (the process by which yeast converts sugars into alcohol). Estimates are that fermentation yields three times as much carbon dioxide as is actually needed to produce (including brewing, canning, and bottling) each batch of beer, with up to 15 grams of CO2 generated per pint of beer brewed. According to the British Beer & Pub Association, over 8 billion pints of beer were consumed in the United Kingdom alone in 2019, contributing to the production of a whole lot of carbon dioxide.

While large, global breweries, with their vast financial resources, have been recapturing and reusing carbon dioxide for a number of years, most craft brewers have considered carbon recapture technology to be prohibitively expensive. They have treated excess CO2 as waste, and vented it into the atmosphere, though that practice may make little sense, either economically or environmentally since, in order to produce subsequent batches, brewers must then turn around and purchase carbon dioxide to carbonate the beer, purge beer tanks and lines of oxygen, and to transfer the beer from tanks to bottles or cans.

And carbon dioxide purchase is a recurring line-item expense that eats into craft brewers’ profit margins.

Capturing and Reusing Carbon Dioxide

The good news is that recent technological innovations, driven in large part by companies working with NASA on space exploration and investigation, have led entrepreneurs to an awareness that CO2 recapture may in fact now be seen as a relatively affordable, and certainly environmentally friendly, option for craft breweries. The technology involves capturing the CO2 that has accumulated during fermentation and purifying the gas to make it suitable for reuse and/or sale.

The Washington Post has reported that Texas-based Earthly Labs has created a product called “CiCi” (for “carbon capture”), a refrigerator-sized unit that enables brewers to trap and reuse accumulated carbon dioxide. Captured CO2 is piped from the fermentation tanks to a “dryer” to separate water from CO2gas. The gas is next purified and chilled to a liquid for ease of storage and subsequent use.

Brewers can reuse their stored carbon dioxide to carbonate new batches of beer, as well as in the canning and bottling processes for the new beer. Craft Brewing Business, a trade website dedicated to the business of commercial craft brewing, reports that breweries can reduce monthly carbon dioxide expenses by 50 percent or more, and CO2 emissions by up to 50%, via carbon capture technology.

Breweries that capture more CO2 than they can use, may elect to sell the surplus to other breweries, bars, restaurants, and any other businesses that also use carbon dioxide. For instance, the State of Colorado, Earthly Labs, the Denver Beer Co., and The Clinic announced in early 2020 a pilot program in which Denver Beer Co. would sell its surplus CO2 to The Clinic, a medical and recreational cannabis dispensary, which would then pump the carbon dioxide inside its grow rooms to stimulate and enrich plant growth.

Oxygen Monitors Can Mitigate Unseen Dangers of Carbon Dioxide

Brewers and others working around carbon dioxide need to be aware of the potential risks associated with CO2. Carbon dioxide is an odorless and colorless oxygen-depleting gas. Since it deprives the air of oxygen, CO2 use presents a potential health hazard for brewery personnel.

According to the Occupational Safety and Health Administration (OSHA), an environment in which oxygen levels fall below 19.5 percent is considered an oxygen-deficient atmosphere and should be treated as immediately dangerous to health or life. When there is not enough oxygen in the air, persons working in the affected area may become disoriented, lose consciousness, or even suffocate due to the lack of sufficient oxygen. Because CO2 is devoid of odor and color, individuals working around it might well, in the absence of appropriate monitoring equipment, be unaware that a risk situation has developed.

As such, The National Fire Protection Association recommends that gas monitoring equipment be placed in storage areas or any place where carbon dioxide is used or stored.

PureAire Dual O2/CO2 Monitors

\

PureAire Monitoring Systems’ Dual Oxygen/Carbon Dioxide Monitor offers thorough air monitoring, with no time-consuming maintenance or calibration required. A screen displays current oxygen and carbon dioxide levels for at-a-glance reading by brewery employees, who derive peace of mind from the Monitor’s presence and reliable performance.

In the event of a carbon dioxide leak, and a decrease in oxygen to an unsafe level, PureAire’s Monitor will set off an alarm, complete with horns and flashing lights, alerting brewery personnel to evacuate the area.

PureAire’s Dual Oxygen/Carbon Dioxide Monitor is well-suited for facilities where carbon dioxide is used, such as breweries, bars, and restaurants. Our Dual O2/CO2 monitor includes both a non-depleting, zirconium oxide sensor cell, to monitor oxygen levels, and a non-dispersive infrared (NDIR) sensor cell, to monitor carbon dioxide levels. PureAire’s O2/CO2 monitors can last, trouble-free, for over 10 years under normal operating conditions.

Saving money, reducing greenhouse gas emissions, and ensuring employee safety...that is certainly something to which we can all raise a glass.



Monday, March 16, 2020

Consumers Have No Beef Eating Plant-Based Meats



Overview
How about meat without involving animals? Move over, veggie burgers; food companies such as Beyond Meat and Impossible Foods, among others, have created plant-based meats that smell, taste, and look (imagine a thick, juicy hamburger) like the real thing. Unlike traditional veggie burgers, made from soy and bean paste, which have been marketed primarily to vegetarians, these companies are wooing and winning over a new group of customer-so-called “flexitarians”- consumers who do eat (or, at least, desire the taste and texture of) meat but, for health or sustainability reasons, want to reduce their meat consumption. According to Barclays Investment Bank, roughly one-third of Americans, or 100 million people, follow a flexitarian diet and that number is expected to rise.

Plant-Based Burgers
Impossible Foods, which makes the Impossible Burger, and Beyond Meat, the company responsible for the Beyond Burger, are perhaps the most well-known producers of meats whose ingredients are derived from plants. Although their ingredients and manufacturing processes are not identical, both companies seek to replicate the essential qualities of a hamburger derived from cows: texture (Impossible and Beyond both utilize various plant proteins); fat/marbling (both companies use coconut oil, as well as other cooking oils); coloring (Impossible relies on soy leghemoglobin, or “heme”, while Beyond uses beet and apple extracts); and flavor (both use natural flavors, and the “heme” that Impossible uses for color also enhances the flavor profile of its products.

Growing Availability and Popularity of Plant-Based Meats
For an industry that barely existed five years ago, the plant-based meat sector is experiencing spectacular growth, and over 50,000 grocery stores and restaurants, including Safeway, Whole Foods, Burger King, Subway, White Castle, KFC, and Carl’s Jr., now carry products from Beyond Meat or Impossible Foods.

And burgers are not the only choice when it comes to plant-based meats. Other options include chicken, pork, and sausages. In August of 2019, after a successful trial run in New York City, Dunkin’ Donuts announced it was rolling out a breakfast sandwich made with Beyond Meat sausages in 9,000 of its stores. Likewise, after selling out of the new plant-based Beyond Fried Chicken in Atlanta, KFC is introducing the product at other locations throughout the South.

According to the Good Food Institute, the value of the U.S. plant-based meat market was $801 Million for the year ending April 2019. Furthermore, investment firm UBS projects growth of plant-based protein and meat alternatives to increase from $4.6 billion in 2018 to $85 billion in 2030.

Gas Usage in Facilities Producing Plant-Based Meats
Food safety compliance is critically important in the food industry and, to continue to grow their sales and increase market acceptance, producers must ensure that their plant-based meats are as safe to consume as non-plant-based meats. Safety requirements dictate that plant-based hamburger, sausage, chicken, and other products be rapidly chilled and/or frozen during the production process and before they can be shipped to restaurant or grocery outlets. As such, modern freezing technology, including the use of tunnel freezers, is essential to the ongoing success of the plant-based meat industry.

Tunnel freezers work by rapidly freezing foods using cryogenic gases, such as liquid nitrogen (LN2) or carbon dioxide (CO2). The food items are placed on a conveyor belt, which carries them into the freezer, where an injection system (utilizing either liquid nitrogen or carbon dioxide), together with fans circulating the gas-chilled air, ensures that all food products are quickly and evenly frozen.

Oxygen Monitors Can Improve Safety in Plant-Based Food Manufacturing
While the use of liquid nitrogen and/or carbon dioxide is important in the production of plant-based meats, it is not without risk. LN2 and CO2 are both oxygen depleting gases, and oxygen deprivation could put employees in real danger if there are gas leaks from freezer supply lines or exhaust systems, or from on-site gas storage containers. In the event of a leak, plant personnel could become disoriented, lose consciousness, or even suffocate from breathing oxygen-deficient air. Since LN2 and CO2 are both colorless and odorless, workers would, in the absence of appropriate monitoring, have no way of knowing that there has in fact been a leak. By utilizing a top-quality oxygen monitor, safety and production personnel can track oxygen levels and detect leaks before workers’ health is jeopardized.

PureAire Water-Resistant Dual O2/CO2 Monitors
PureAire Monitoring Systems’ water-resistant dual oxygen/carbon dioxide monitors offer thorough air monitoring, with no time-consuming maintenance or calibration required. A screen displays current oxygen and carbon dioxide levels, for at-a-glance reading by employees, who derive peace of mind from the monitor’s presence and reliable performance. In the event of a nitrogen or carbon dioxide leak, and a decrease in oxygen to an unsafe level, the monitor will set off an alarm, complete with horns and lights, alerting personnel to evacuate the area.

PureAire’s dual oxygen/carbon dioxide monitor is housed in an IP67 water resistant enclosure that will keep the electronics dry during wash-downs, and the monitor will remain accurate at extremely low temperatures. That makes it ideally suited for environments, such as plant-based food processing facilitiesthat use liquid nitrogen and carbon dioxide. Built with zirconium oxide sensor cells and non-dispersive infrared sensor (NDIR) cells to ensure longevity, PureAire’s water-resistant dual O2/CO2 monitors can last, trouble-free, for over 10 years under normal operating conditions.

Cannabis Extraction Safety



In 1996, California passed Proposition 215, making it the first of many states to ultimately legalize medical cannabis; as of January 2020, an additional 32 states and the District of Columbia have also made medical cannabis legal. Additionally, recreational use of cannabis is now legal in 11 states and is decriminalized in many others. Cannabis legalization and decriminalization have made cannabidiol (“CBD”, a non-psychoactive compound found in cannabis), and tetrahydrocannabinol(“THC”, the chemical responsible for most of cannabis' mind-altering effects), available to both recreational users and patients seeking treatment for such health issues as arthritis, anxiety, inflammation, seizure disorders, and nausea.

Since California’s groundbreaking move in 1996, medical and recreational cannabis has become a significant and rapidly growing industry. According to DC-based cannabis researcher, New Frontier Data, legal cannabis sales in the U.S. are expected to reach $30 billion annually by 2025. The industry growth has led to a substantial increase in grow rooms, medical dispensaries and other retail outlets, and extraction facilities.

Extraction
Extraction is a process by which desired chemical compounds are extracted and separated from the cannabis plant. Extraction strips the plant of essential oils, including CBD, THC, and terpenes (aromatic oils that give cannabis plants their distinctive scents). The extracted oils can be utilized in vape pens, edibles, capsules, tinctures, and topical solutions. Based on the end product, various techniques can be used for extracting the oils, including carbon dioxide (CO2) extraction and hydrocarbon solvent extraction (using solvents such as butane or propane).

Carbon Dioxide Extraction
Carbon dioxide, high pressure, and heat can be combined to create a “supercritical fluid” that extracts cannabis components from the plant. The CO2 extraction method generally produces high yields with relatively little waste. Temperatures and pressures can be adjusted to create multiple products including vaporizer oils; dabbing concentrates such as so-called waxes, crumble, shatters, and saps; and distillates (cannabis extracts that have been further purified and processed to separate and isolate the various cannabinoids, which include CBD and THC). Because CO2 evaporates on its own, many in the medical products and food and beverage industries find the CO2 extraction method appealing, since no residual carbon dioxide remains in the final manufactured product.

Hydrocarbon Solvents Extraction
Hydrocarbon extraction typically uses organic solvents such as butane and propane to separate essential oils from the plant material. The use of hydrocarbons for extraction is popular owing, in large part, to the relatively low overhead costs, efficiency (including the wide variety of products that can be created from a single extraction, without the need for further refinement), and high product quality associated with this technique. For instance, the low boiling point of butane, and even lower boiling point of propane, allow extractors to remove the desired compounds without risking evaporation of, or damage to, the delicate and heat-sensitive cannabinoids and terpenes. Moreover, their low boiling points makes it relatively easy to purge any residual butane or propane at the end of the extraction process, leaving behind only a relatively pure product.

Oxygen Monitors Can Protect Extractors and Their Employees
 While CO2 and hydrocarbon solvents are important techniques for extracting essential oils from cannabis plants use of these gases is not without risk, since extraction facility personnel and property are exposed to potential leaks from gas supply lines and storage containers.

Carbon dioxide is an oxygen-depleting gas that is both odorless and colorless. As such, absent appropriate monitoring to detect that a leak has occurred, extraction employees could become dizzy, lose consciousness, and even suffocate from breathing oxygen-deficient air. Hydrocarbons such as butane and propane also deplete oxygen and, they are flammable and explosive as well.

Proper gas detection equipment should be placed where the cannabis extraction process takes place, as well as in CO2 and hydrocarbon storage rooms, and in any other site where CO2, butane, and propane may be expected to accumulate. The gas detection equipment should include the capacity to activate visual and audible alarms, stopping the flow of gas and turning on the ventilation system.

PureAire Monitors
PureAire Monitoring Systems has safety monitors to meet the needs of cannabis extractors, whether they use CO2 or hydrocarbon solvents.

For facilities using carbon dioxide to extract their products, PureAire’s line of dual oxygen/carbon dioxide monitors offer thorough air monitoring, with no time-consuming maintenance or calibration required. The O2/CO2 monitor comes with user-adjustable alarm setpoints for both oxygen and carbon dioxide. The monitor is built with zirconium oxide sensor cells and non-dispersive infrared sensor (NDIR)cells, to ensure longevity.PureAire’s O2/CO2 monitors can last, trouble-free, for over 10 years under normal operating conditions.

Extractors utilizing hydrocarbon solvents, such as butane or propane, rely on PureAire’s LEL, explosion-proof, combustible gas monitors. The monitor is housed in a NEMA 4 enclosure specifically designed to prevent an explosion. The durable, long-life LEL catalytic sensor will last 5+ years without needing to be replaced.

PureAire monitors feature an easy to read screen, which displays current oxygen levels for at-a-glance observation by employees, who derive peace of mind from the monitor’s presence and reliable performance. In the event of a gas leak, or a drop in oxygen to an unsafe OSHA action level, PureAire’s monitors will set off alarms, complete with horns and flashing lights, alerting personnel to evacuate the area. At the same time, the monitors can be programmed to turn off the flow of gas (CO2, butane, or propane, as appropriate), and turn on the ventilation system.

In short, PureAire’s monitors enable cannabis extractors, in a cost-effective manner, to preserve both the quality of their products and the well-being of their employees.

Tuesday, June 25, 2019

Freeze-Dried Food…Dogs Eat It Up

Overview

As dog owners, we treat our pets as we do our children, taking care that the food we give them is not only filling and nutritious but contains only high-quality ingredients sourced and processed in ways that meet our exacting standards.

For many owners, far in the past are the days of grabbing any old bag of kibble off the shelf and feeding it to Fido or Ginger. Dog owners today are making informed choices in their purchases of pet food, such as whether the ingredients are all-natural or organic, whether they contain allergens to be avoided, which proteins predominate in the mix, etc. Not only are owners increasingly educated about what goes into their dogs’ food, they are faced with many choices when it comes to exactly what form the food will take.

Types of Dog Food

Major pet food types available to contemporary dog owners, from a wide array of manufacturers, include dry food, semi-moist, canned, raw, and freeze-dried food.
Dry food, commonly known as kibble, is the most prevalent type of dog food on the market. Semi-moist food is served either on its own or added to kibble for a variety of tastes and textures. Canned food is a moist product with a long shelf life. Raw food appeals to owners who believe that an uncooked all-meat diet is closer to what dogs would have eaten in the wild, before they became domesticated. Raw foods may be produced and sold as either fresh, fresh frozen, or freeze-dried.

Freeze-Dried Dog Food

The freeze-dried dog food segment--including 100% freeze-dried meals, so-called “kibble+” (dry kibble mixed with freeze-dried components), and freeze-dried treats, such as beef liver and other types of training tidbits--currently commands only a niche share of the ~$30 Billion U.S. dog food industry, but it is rapidly growing in popularity among owners seeking, as in their own diets, to avoid highly processed foods.

Purchasing freeze-dried proteins, whether cooked or raw, as well as fruits and vegetables (which are typically freeze-dried in a raw state), allows owners to provide their pets with minimally processed, nutrient-rich, natural foods. Freeze-drying quality ingredients makes for an easily transportable, shelf-stable tasty food that does not require refrigeration.

Gas Usage in Freeze-Dried Food Processing and Packaging

Food safety is as important in the pet food industry as it is in the manufacturing and distribution of human-grade foodstuffs.  Proper temperatures must be maintained in order to prevent mold and bacteria growth resulting from, among other things, improper cooking and cooling temperatures, as well as insufficient or excessive moisture.

Quality control and safety concerns dictate that, because of their rapid cooling and freezing properties, liquid nitrogen (LN2) and liquid carbon dioxide (liquid CO2) be used in pet food production to uniformly cool proteins after cooking, and to freeze them as part of the freeze-drying process. Once properly chilled, the proteins and other ingredients that go into a freeze-dried dog food product are quickly frozen in blast freezers using LN2 or liquid CO2.  After freezing, they are placed into vacuum drying chambers for some 12 hours, until the drying process is complete (i.e., essentially all moisture has been removed), following which the food is ready for packaging.

To prolong dog food shelf life (by inhibiting the growth of mold and bacteria which thrive in oxygenated environments), nitrogen is injected to displace oxygen from the product packaging.The addition of nitrogen during the packaging phase also provides a cushion to protect the contents from settling and breakage that can occur during shipping and handling.

Oxygen Monitors Can Improve Safety in Pet Food Manufacturing and Packaging

While their use is essential in the production of freeze-dried dog food, nitrogen and carbon dioxide can pose health risks (including death by asphyxiation) to employees working in the industry. Nitrogen and carbon dioxide are both odorless and colorless, and they displace oxygen. Absent appropriate monitoring, workers would be unable to detect a leak if one were to occur in a gas cylinder or line. Conversely, by utilizing a top-quality oxygen monitor, safety and production personnel can track oxygen levels and detect leaks before workers’ health is jeopardized.


PureAire Monitors

With PureAire Monitoring Systems’ dual oxygen/carbon dioxide monitor, pet food producers can track levels of oxygen and detect nitrogen or carbon dioxide leaks before workers’ health is at risk. PureAire’s O2/CO2 monitor measures oxygen and carbon dioxide 24/7, with no time-consuming maintenance or calibration required. PureAire’s monitors can handle temperatures as low as -40C, making them ideally suited for environments, such as pet food processing plants, that use liquid nitrogen and carbon dioxide.

Built with zirconium oxide sensor cells and non-dispersive infrared sensor (NDIR) cells, to ensure longevity, PureAire’s O2/CO2 monitors can last, trouble-free, for over 10 years under normal operation conditions.


Tuesday, May 14, 2019

Winemaking - A Must Read


Background

The art and science of winemaking have been around for thousands of years. Winemakers rely on their instincts, palettes, and a thorough knowledge of the nuances involved in every stage of the winemaking process as they strive to achieve the flavors and qualities that they desire.Even a cursory overview of certain elements of the process underscores the critical role played by gases…from fermentation to first sip…in preserving the flavors created and nurtured by the winemaker’s skills.

From Harvesting to Fermentation

Since grapes do not continue to ripen after they have been picked, winemakers must carefully monitor the fruits when still on the vine, to ensure that they are harvested when flavor and ripeness are at peak levels. To protect the fragile grapevines, harvesting is typically done by hand, a laborious but important undertaking.

Once grapes are harvested, they are sorted and, sometimes, destemmed, and then crushed. At one time, grapes were crushed by hand (or, rather, by foot), but winemakers today crush them by using mechanical presses, which improves sanitation and the lifespan of the wine “must” (derived from the Latin phrase vinum mustum, or “young wine”), which is the industry term for the mixture of grape juice, seeds, and skins(and, in certain red wines, stems) that is the result of crushing.

The wine must is blanketed with nitrogen to reduce excessive levels of oxygen, which can oxidize the must, leaving it discolored and overly tart.For white wines, solids in the must are quickly removed after the crushing, in order to preserve the pale color of the juice.  For reds, solids are left in the must, to create a more flavorful wine.

Next, the young wine is transferred to fermentation tanks. The fermentation process begins when yeast is introduced to the must.  Most winemakers today use commercial yeasts, so they can control the predictability of the final product, though some winemakers (much like certain Belgian beermakers) continue to use the old-fashioned method of allowing wild yeasts to mix with the wine must. In either case, during fermentation, the yeast converts the grape sugars into alcohol. A byproduct of the fermentation process is carbon dioxide.  Too much carbon dioxide in the fermentation area can displace oxygen and create potential health and safety risks to employees.

The fermentation process can take anywhere from ten days to a month or more.  To maintain sweetness, some wines are not allowed to fully ferment, which leaves higher levels of sugar in the wine.

Once fermentation is complete, the wine is clarified or filtered, in order to remove residual solids and any other undesired particles. At that point, the fermented wine is transferred into aging vessels, most often either stainless-steel tanks or oak barrels.

Aging and Bottling

Exposure to oxygen can negatively impact a wine’s flavor, longevity, and overall quality. Inert gases, including argon, nitrogen, and carbon dioxide, may be used to flush oxygen out of the environment during storage, to help preserve the flavor and quality of the wine.

Flushing fermentation vessels, aging tanks, barrels, and bottles with an inert gas before filling with wine helps prevent oxidation, which is much dreaded by winemakers, as it produces discoloration, unpleasant aromas, and off flavors reminiscent of vinegar.

Oxygen Monitors Can Protect Winemakers and Their Employees

The same property--oxygen displacement --that makes inert gases ideal for winemaking, can be deadly if gas leaks from the supply lines or storage containers, or if there is a dangerous buildup of carbon dioxide during the fermentation stage. Employees could suffocate from breathing oxygen-deficient air and, since inert gases lack color, and odor, there is no way, absent appropriate monitoring, to determine if there has been a leak.

PureAire Monitors 

PureAire Monitoring Systems’ line of oxygen and dual oxygen/carbon dioxide monitors offer thorough air monitoring, with no time-consuming maintenance or calibration required. A screen displays current oxygen levels for at-a-glance reading by employees, who derive peace of mind from the monitor’s presence and reliable performance.

Built with zirconium oxide sensor cells and non-dispersive infrared sensor (NDIR)cells, to ensure longevity, PureAire O2 and O2/CO2 monitors can last, trouble-free, for over 10 years under normal operating conditions.

As such, the use of PureAire’s monitors will enable winemakers, in a cost-effective manner, to preserve both the quality of their wines and the well-being of their employees.

Saturday, April 20, 2019

New requirements for safe use and storage of liquid nitrogen and dry ice


The College of American Pathologists ("CAP")recently imposed new requirementsto address risks related to the use and storage of liquid nitrogen ("LN2") and dry ice.

Background

The new requirements come after a deadly incident in 2017, when liquid nitrogen leaked at a Georgia lab that was not accredited through CAP.  Emergency responders were called to the scene when an employee suffered burns and, moreover,lost consciousness from oxygen deprivation caused by the leak. While the employeeeventuallyrecovered from her injuries, one of the first responders died of asphyxiation as a result ofthe nitrogen leak.

That unfortunate incident illustrates the dangers of nitrogen leaks,which are inherent in the storage and use of LN2. Indeed, there are several cases reported nearly every year of laboratory personnel who die of asphyxiation caused by exposure to nitrogen gas.
Asphyxiation riskis present in dry ice usage as well since, if it is stored in areas without proper ventilation, dry ice can replaceoxygen with carbon dioxide, potentially causing workers to rapidly lose consciousness.

CAP’s New Regulations

Despite their safety risks, both dry ice and LN2 have many beneficial uses in commercial and lab settings, including hospital and research facilities. As such, CAP’s new focus on utilizing best practices to increase employee safety and reduce the danger of nitrogen leaks is vitally important.
Before the regulations were changed, lab directors had greater personal discretion in selectingthe types and deployment of safety equipment utilized in their facilities. Now, laboratories are required to place oxygen("O2") monitors at human height breathing levels anywhere liquid nitrogen is used or stored, and they must place signage warning of safety risk regarding, and train all affected employees on safe handling of, LN2 and dry ice.

Pathologists understand that oxygen/carbon dioxide monitors must be placed appropriately anywheredry ice or LN2 are used or stored.  Even a couple tanks of liquid nitrogen kept in a supply closet pose a safety risk, because even a small leak can quickly displace a large amount of oxygen.


Oxygen Monitors Protect Laboratory Workers

While many people realize that the use and storage of liquid nitrogen and dry ice can present health risks, they may fail to grasp the speed at which circumstances can become dangerous.  It takes only a few breaths of oxygen-deficient air for one to lose consciousness.

AS CAP recognized, oxygen and carbon dioxide monitors offer an effective solution to the health and safety risks posed by nitrogen leaks and inadequatedry ice storage. O2/CO2 monitors continually monitor the air, and they will remain silent so long as oxygen and carbon dioxideremain within normal levels.However,in the event that oxygen is depleted to an unsafe level (19.5%, as established by OSHA), or carbon dioxide levels rise to an unsafe level, alarms embedded in the monitors will sound, alerting employees to evacuate the area and summon assistance from qualified responders.

PureAireMonitors

PureAire Monitoring Systems’ line of oxygen and dual oxygen/carbon dioxide monitors offerthorough air  monitoring, with no time-consuming maintenance or calibration required., The monitors function well in confined spaces, such as closets, basements, and other cramped quarters.  PureAire’s monitors can handle temperatures as low as -40 C, making them ideally suited for environments, such as laboratories, that utilize liquid nitrogen or dry ice. A screen displays current oxygen levels for at-a-glance reading by employees, who derive peace of mind from the monitor’s presence and reliable performance.
Built with zirconium oxide sensor cells and non-dispersive infrared sensor (NDIR)cells, to ensure longevity, Pure Aire O2 monitors can last, trouble-free, for over 10 years under normal operating conditions.  That makes PureAire a cost-effective choice forprotecting employees and complying with the new safety regulations affecting labs and hospitals.
Learn more about oxygen monitors and best practices for their use at www.pureairemonitoring.com.

Thursday, April 11, 2019

From Farm to Market: Fruit Ripening


Fruit has a brief window where it is perfectly ripe. If farmers waited until every piece of fruit was ripe before harvesting, farming would be more labor-intensive as farmers rushed to pick ripe fruits. Prices might crash due to a short-term glut of fruit on the market. To ensure a steady supply and demand, keep prices competitive, and reduce food waste, farmers use artificial ripening procedures. One method for ripening fruit after harvest involves ripening chambers. Ripening chambers using ethylene, a natural plant hormone, enable the fruit to be harvested, stored, and transported to where it will be marketed and consumed. While ethylene ripening chambers are beneficial, they are not without risks.

How Ethylene Ripening Chambers Work

While there are other ways to artificially ripen fruit in ripening chambers, ethylene has become a favorite, since it occurs naturally in fruit.
Ethylene is a natural hormone found in plants. Fruits begin to ripen when exposed to ethylene, whether the exposure occurs naturally or artificially. In ethylene ripening chambers, unripe fruits are laid out, and the chamber is sealed.Ethylene gas is then piped into the sealed chamber. As the fruit is exposed to ethylene, the fruit
“respires”,which involves intake of oxygen andemission of carbon dioxide. For the ripened fruit to have the right color and flavor, the ripening should occur in a controlled atmosphere in which the temperature, humidity, ethylene, oxygen, and CO2 concentrationaremaintained at optimum levels.
However, there is a risk of combustion from the ethylene gas, as well as decreased levels of oxygen and increased levels of carbon dioxide inside the chamber.

How Oxygen/Carbon Dioxide and LEL Combustible Monitors Protect Employees

Low oxygen levels cause respiratory distress. If oxygen levels drop below the safe threshold for breathing, which could happen in the event of an ethylene gas leak, employees could suffocate. Suffocation is also a danger when there is too much carbon dioxide in the air. Ethylene gas used in ripening chambers would be hazardous if an employee were to enter the chamber before determining that oxygen and carbon dioxide were at safe levels.

A dual oxygen/carbon dioxide (O2/CO2) monitor detects the levels of oxygen and carbon dioxide within the chamber and sounds an alarm should the oxygen level falls to an OSHA action levelor if the carbon dioxide rises to an unsafe level.  By checking the monitor’s display, an employee will know when it is safe to enter the chamber.

PureAire Monitoring Systems has developed its dual O2/CO2 monitor with zirconium oxide and non-dispersive infrared sensor (“NDIR”) cells. The cells are unaffected by changing barometric pressure, storms, temperatures, and humidity, ensuring reliable performance.  Once installed, the dual O2/CO2 monitor needs no maintenance or calibration.

Ethylene is a highly flammable and combustible gas. If the gas lines used to pipe ethylene into the ripening chambers were to develop a leak, the chamber could fill with ethylene and reach combustible levels. A combustible gas monitor, which takes continuous readings of combustible gases, would warn employees of an ethylene leak within the chamber.

PureAire Monitoring System's Air Check LEL combustible gas monitor continuously monitors for failed sensor cell and communication line breaks. The Air Check LEL gas monitor is housed in an explosion-proof enclosure. If a leak or system error should occur, an alarm will immediately alert employees.

To learn about PureAire Monitoring Systems’ dual O2/CO2 monitors or the Air Check LEL Combustible monitor, please visit www.pureairemonitoring.com.

Wednesday, November 15, 2017

The Benefits of Nitrogen and Carbon Dioxide for Food Processing



A blend of gases -- carbon dioxide, oxygen, and nitrogen -- help preserve packaged food by reducing the amount of oxygen inside the sealed package. Gas flushing or Modified Atmosphere Packaging, as the process is called, also reduces the amount of processing that food must undergo. This preserves the quality and nutrient content of meats, vegetables, and other foods.

Estimates suggest that 25-40 percent of fresh food does not reach consumers due to spoilage in transit. Modified Atmosphere Packaging enables fresh food to stay fresh by slowing down the food spoilage process, reduces food waste, and allows consumers to store purchased foods for longer. 

Without Modified Atmosphere Packaging, oxygen levels inside food packages would be 20.9 percent. By introducing nitrogen into the package, facilities strive to lower oxygen levels, sometimes as far as zero. With no oxygen inside the package, bacteria will be unable to grow and the food will not oxidize. Carbon dioxide also inhibits bacteria growth and lowers the pH of preserved food. Carbon monoxide is often used in meat packaging, as it can preserve the red color. Packing plants use either low-barrier, breathable film that allows fruits and vegetables to breathe, or high-barrier film that prevents gas inside packaged meat, fish, or cheese from seeping out. 

As oxygen is flushed out of the package, the blend of nitrogen and carbon dioxide or carbon monoxide is piped in and the package is sealed, trapping the inert gases inside.


While the process of Modified Atmosphere Packaging revolutionized food packing, it isn't without risk. Nitrogen gas, a critical component of the gas flushing blend, has the potential to create an oxygen deficient environment if a leak occurs. As nitrogen leaks, it physically displaces oxygen, often in a matter of minutes. As employees breathe air that does not have enough oxygen, they may become tired and confused or experience difficulty breathing. Within minutes, employees could die from asphyxiation as a result of breathing oxygen-deficient air. 
Since nitrogen gas has no color or odor, secondary measures must be used to detect a leak before staff experience life-threatening symptoms. One simple and cost-effective way to monitor the food packing facility for leaks is by using an oxygen monitor. 

How an Oxygen Monitor Protects Workers in Food Packing Plants

While it's critical to maintain the right blend of gas in packaged foods, it's also important to ensure that gas used in food packing equipment does not leak out of the machines. Gases used in food packing, including nitrogen, are colorless and odorless, so staff would be unable to detect a leak visually. By installing an oxygen monitor in the food packing facility, employers can detect leaks before workers' health is adversely affected. 
Since nitrogen gas depletes oxygen, it's easy to tell whether nitrogen is leaking by taking continual measures of oxygen. The secure, wall-mounted oxygen monitor checks the levels of oxygen in the room and remains silent as long as oxygen is above the minimum amount. 

The oxygen monitor will sound an alarm if oxygen falls to 19.5% or 18.0%. The 90 db alarm is designed to be heard over the sound of the equipment, and there's also a flashing light to warn employees of a drop in oxygen levels. Employees can then leave the room before the oxygen falls below the acceptable threshold and staff begin to experience health problems. 


In addition to using oxygen monitors on the food packing line, facilities should also use oxygen monitors wherever inert gases are stored. Oxygen deficiency monitors from PureAire are designed to last for a minimum of 10 years with no maintenance or annual calibration. The monitors feature a digital display that's easy to read, and do not drift as a result of barometric pressure. If you're looking for an oxygen monitor that's low maintenance, accurate, and easy to use, consider PureAire. Visit www.pureairemonitoring.com to learn more.

Nitro Beer Tastes Better


If you've ever remarked on the smooth creaminess of a pint of Guinness, you've picked up on the key difference in its carbonation: Nitrogen rather than carbon dioxide. Such "nitro" beers have become a trend in recent years, with major U.S. breweries and small startups alike offering nitro products. Nitrogen keeps bitterness in check and balances out the hops to make drinkable craft brews, but it also increases the risk for breweries. 

How Nitro Beer Works 

CO2 is a natural byproduct of the beer brewing process, occurring when the yeast consumes the natural sugars in the wort. Breweries often add additional CO2 when kegging or bottling the beer. The carbon dioxide gas adds flavor, aroma, and those bubbles that fizz against your tongue. CO2 is also slightly acidic, so it can intensify the bitter flavors in a brew. While this might be desirable in a hop-bomb IPA or citrusy hefeweizen, it isn't always complementary to the flavor of the brew. 

Nitrogen gas adds carbonation without the bitterness, allowing the beer's natural flavors to remain. It delivers a new drinking experience with favorite brews. Nitrogen is harder to dissolve than carbon dioxide, so the resulting bubbles of carbonation are smaller. The mouth feel of a nitro beer is smoother or creamier. Dark beers -- stouts and porters -- pair well with nitrogen gas, but the nitro technique can also present a new take on a classic IPA or wheat ale. 

While the process of adding nitrogen to beer is similar to carbon dioxide, breweries must take some extra precautions. Nitro beers must be stored in tanks rated to a higher psi, 25 rather than 15. Breweries must also take precautions to ensure that nitrogen isn't leaking out of the supply lines or canisters and onto the brewery floor. Nitrogen gas displaces oxygen from the air, so if it did leak, the room would soon become oxygen deficient. Breathing oxygen deficient air causes confusion, dizziness, respiratory distress, and death via asphyxiation. Since nitrogen gas has no color or odor, breweries need a tool to check for leaks by measuring ambient oxygen levels. 

How an Oxygen Monitor Protects Brewery Staff 

Since staff cannot tell if there is a leak -- there's nothing to see or smell -- there is no way they can protect their health if a leak occurs. Oxygen monitors provide a safeguard against respiratory distress by measuring oxygen levels. As long as there is no leak, the oxygen in the brewery should remain constant. If nitrogen gas starts to leak, oxygen levels will fall. Before oxygen levels fall to a critical threshold, an oxygen monitor will sound an alarm. There's also a flashing light to get the attention of staff. 

When the alarm goes off, workers can exit the brewery floor before the lack of oxygen poses a threat to their health. Emergency personnel can then come and contain the leak. 
PureAire offers a robust oxygen monitor with two alarm levels: 19.5 percent and 18 percent, a 90 db alarm, and a bright flashing light. The oxygen deficiency monitor is designed to mount on the wall and features an easy-to-read digital interface, so workers can tell at a glance whether there's a problem.

PureAire's monitors use zirconium sensors, which deliver reliable performance even during thunderstorms, sudden barometric shifts, and other weather incidents. These O2 monitors are designed to last for 10 or more years with no maintenance or calibration, unlike other products that need regular maintenance to remain effective.  

Breweries should place one oxygen monitor in the area where beer is bottled and kegged and another where nitrogen is stored. This ensures the entire facility is protected from leaks. 


Left Hand Brewery, a pioneer of the nitro beer trend, relies on PureAire products for workplace safety.  Learn more about the oxygen monitor form PureAire at www.pureairemonitoring.com.

Tuesday, August 1, 2017

Oxygen Monitors now Required for Nitrogen, Argon, Helium, and CO2 use in Denver


Oxygen Monitors now Required for Nitrogen, Argon, Helium, and CO2 use in Denver

The Colorado city of Denver recently passed a new law that requires facilities that use insert gas to install oxygen deficiency monitors wherever these gases are used in excess of 100 pounds. Learn what the new law requires from businesses and how an oxygen sensor protects your employees, your business, and your peace of mind. 

What Denver's New Law Requires 

The law specifically applies to Colorado commercial, industrial, or manufacturing facilities that use inert gases, including nitrogen, argon, carbon dioxide, and helium. Facilities covered by the new law include water treatment plants, laboratories, and food processing plants. 
Fire suppression systems and medical gas systems are not covered by the Denver law. 
Under the new law: 
  • Inert gas storage tanks must be placed in approved locations, whether stored inside or outside of the building 
  • Storage containers must be secured to prevent tip-overs
  • All valves and tubing used with the gas system must meet applicable standards
  • Gases must vent outside the building
  • All areas where gas is used must either have an oxygen deficiency monitor or continuous ventilation system, which keeps the oxygen levels in the room steady 
  • Oxygen alarms should be visually inspected daily by trained staff members
  •  Storage tanks, piping, and other parts of the system must be checked on a monthly basis 
  • Tests of the system must be conducted regularly with either air or an inert gas
The Denver law sets out regulations for the type of oxygen deficiency monitor, plus where and how to use them. Acceptable monitors must be installed in any location where an inert gas leak could result in an oxygen deficient environment where public health could be at stake. 
Oxygen detectors must be on an approved device list and directly connected to the electrical supply and fire alarm system for the site. The oxygen detectors must be permanently mounted to the wall at a height which is consistent with the given gas's vapor density, so they can work properly. The devices must be located within their specified ranges of operation, in order to ensure the monitors can work as intended. 

The law prohibits self-zeroing or auto calibrating devices, unless they can be spanned or zeroed to check that the oxygen monitor is working as it should be. All installed oxygen monitors must be calibrated regularly to ensure safe and reliable operation. 

Alongside mounted alarms, companies must place signage that notifies employees of the oxygen monitor and gives instructions for what to do in the event of an alarm. Typical instructions tell staff to leave the building and call 911 if the alarm is going off. 

Signs notifying employees of the risk for oxygen deficiency must be posted anywhere inert gas is stored or used.

To further protect employees, the Denver law mandates that gas be transported, filled, or moved only by qualified individuals who follow protocol. All equipment, including piping systems, must be inspected for competency and the organization must maintain records for a period of three years. 

Why an Oxygen Monitor is a Practical Suggestion 

Oxygen deficient environments occur when an inert gas, such as helium, nitrogen, or argon, escapes into the environment and begins to displace oxygen. Since these gases have no odor or color, there is no way that staff working in the room can tell something is leaking. As the oxygen levels fall, employees can experience confusion and respiratory distress, resulting in death by asphyxiation. 
An oxygen monitor tracks ambient levels of oxygen and sets off an alarm when oxygen levels fall below the safe threshold, thus protecting employee safety. Since employees can both hear and see the alarm, they will know there is a problem even if they are operating loud equipment that overrides the noise of the sensor. 

Oxygen monitors are simple solutions to pressing problems faced by organizations that rely on inert gases and want to mitigate their risk. 

PureAire's oxygen sensors are cost-efficient and high quality. They are designed with a zirconium sensor, which is capable of lasting for as long as 10 years. PureAire's oxygen sensor is accurate in diverse environments, from storage freezers to basements. The sensor functions between -40 and 55 C. While PureAire's oxygen monitors do not need to be calibrated, they are capable of calibration, thus eligible for use in Denver. 

PureAire's monitors need little maintenance to work reliably once they are installed using the included wall-mounting brackets, and they are not affected by changes in the barometric pressure, a known problem with other types of oxygen sensors. PureAire's products can be set to measure oxygen levels of either 18 percent or 19.5 percent (which is the OSHA action level), to comply with standards. 

To learn more about oxygen monitors from PureAire, and view specifications, go to www.pureairemonitoring.com.