Showing posts with label inert gases. Show all posts
Showing posts with label inert gases. Show all posts

Wednesday, December 26, 2018

Where Can I Buy an Oxygen Monitor?



You know you need an O2 monitor, but where do you get one, and how much does it cost?  Selling oxygen deficiency monitors is our business, so we've rounded up information to choose the right oxygen deficiency monitor for your needs. 

Who Should Use an Oxygen Deficiency Monitor? 

An oxygen deficiency monitor should be placed anywhere that inert gases, such as argon or nitrogen, are used or stored. Industries that use an oxygen deficiency monitor include: 

  • Research & development – Laboratories often perform testing using nitrogen, argon, or CO2.
  • Medical gases- Used in hospitals, or labs requiring ultra-purity (99.9%) inert gases or nitrogen gas.
  • MRI facilities- Helium gas surrounds the MR magnet to protect from overheating while in operation.
  • Pharmaceutical- Nitrogen is used in cryogenic freezers and CO2 or dry ice is commonly used for shipping heat sensitive prescription drugs.
  • Cryotherapy- Nitrogen gas is used to create on-demand low temperatures quickly for therapy. Used for treating people to reduce inflammation.
  • Cryopreservation- N2 gas is used in the process of cooling and storing cells, tissues, or organs at very low temperatures to maintain their viability.
  • Universities- Many schools specializing in medicine, sciences, or aerospace require nitrogen gas, argon gas, or carbon dioxide for experiments and long-term research.
  • Semiconductor- Ultra purity nitrogen gas or other inert gases are required to reduce corrosion and oxidation on wafers or in semiconductor tools.
  • Food & Beverage- Nitrogen gas or CO2 is used to rapidly flash freeze food, or increase the shelf life of packaged foods and beverages.
  • OLED- Nitrogen gas is used to reduce oxidation in printing chambers maintaining the quality of the substrate.
  • 3D Printers- Argon gas and nitrogen gas are used in printers to reduce corrosion and protect metals from being a source of ignition, most commonly titanium metals.

What is an Oxygen Monitor Alarm?

An oxygen monitor alarm goes off if oxygen levels fall to a critical threshold, which is defined by OSHA as below 19.5 percent. 

The type of alarm varies by the specifications of the oxygen deficiency monitor you're considering. At PureAire, our oxygen monitors have two alarm levels, for 19.5 percent and 18 percent. The built-in alarm operates at 90 decibels, so workers can hear the alarm over facility noise. The optional horn and strobe combination amplifies the alarm. 

Alarm relays link alerts with third party communication systems, such as control panels, PLCs, or fire alarm systems for maximum versatility. 

How Much Does an Oxygen Monitor Cost?

Oxygen monitors range in price from $1,500 to $4,500, depending on if you need percentage or ppm accuracy. 

Where Can I Buy an Oxygen Monitor? 

Now that you understand the different features available in an oxygen monitor, as well as who should have an O2 monitor, you're ready to research and buy. We're partial to PureAire products, but we always recommend that you review the specifications of any oxygen deficiency monitor so you understand what features the product has and whether it's right for you. PureAire includes a sensor lasting 10 year or more which is usually more desirable when you’re planning on using an oxygen monitor longer than 2 to 3 years.

You can buy an oxygen deficiency monitor online from the manufacturer, directly though distributors, and through commerce outlets as well. 


PureAire works with various distributors such as Airgas, Air Liquide, Linde, Air Products, Fisher Scientific, and Johnson Controls.

One note of caution here, especially if you use the internet to research oxygen monitors. A number of products may come up when you search for O2 monitors that are NOT the correct product to detect gas leaks. You may find search results for the following products when you begin to look for oxygen monitors online: 

  • Finger oxygen monitor
  • Blood oxygen monitor 
  • Pulse oximetry monitor 
  • Oximeter
  • Baby monitor 

As you may guess from the names, these other monitors are commonly used in medical and pharmaceutical settings. The price point will be far less than what you would spend for the type of oxygen monitor we're talking about. The other oxygen monitors are also found in stores and online at pharmacies: Walgreens, Target, CVS, and the like. 

When you review the product specifications, make sure the product you've found does what you need it to do: Monitor levels of oxygen in the air to detect a gas leak that could harm your facility and workers. 
If there are other questions you have about shopping for an oxygen deficiency monitor, we're here for you. Chat with us online or email us today. 


Tuesday, October 2, 2018

Gas Distributors and Specialty Gas Suppliers Are the Key to Technology Companies



The technologies that power laptops, smartphones, LED televisions, and other technologies rely on one hidden ingredient: Gas. Compressed and inert gases help create a pure environment, control the temperature, and carry other substances for a high-quality end product. See how the different gases used play a pivotal role in technology product development and also how they introduce health and safety risks into the workplace. 

Compressed Gases Used in Technology Devices 

The most common compressed gases used in technologies include argon (Ar), helium (He), and nitrogen (N2). 
Liquid and gas helium have a range of uses in science, laboratory, manufacturing, and technology settings. Within the semiconductor industry, helium keeps the manufacturing environment pure so that no unwanted chemical reactions occur. Since helium conducts heat efficiently, it stabilizes the temperature when silicon is introduced in the semiconductor manufacturing process. Helium's ability to cool quickly aids in a range of uses, from chilling semiconductor wafers to keeping an MRI magnet cool.  

Nitrogen (N2) gas aids with the liquidous stage of semiconductor manufacturing, where the solder is wetting the surface to create a good bond. Since nitrogen flushes out oxygen, it's also used during the purging process. 

Some semiconductor manufacturing facilities have opted for nitrogen generations onsite rather than N2 delivery from a commercial gas supplier. Since nitrogen is one component of air, it can be distilled for purity onsite using a generator. 

Like helium (He) and nitrogen, argon or Ar is inert. This gas is introduced in the sputtering phase of semiconductor manufacturing. Since argon maintains a highly pure environment, it prevents silicon crystals used in semiconductors from developing impurities. 

To source these gases, semiconductor, LED, and other manufacturers turn to compressed gas providers, who offer on-demand delivery of combustible gases. The chief gas distributors include Praxair, Airgas, Air Liquide, Linde, Matheson Tri-gas, and BOC.

The Hidden Dangers of Specialty Gas

While these specialty gases are highly useful, there is a danger associated with their use. Helium, nitrogen, and argon all deplete oxygen from the air. In the manufacturing process, this is a desired trait. Oxygen can cause flaws in the final product. 

Where trouble starts is when leaks occur and the specialty gas escapes into a closed room. Leaks can develop in supply lines, storage canisters, or nitrogen generators. These gases have no scent or color, so employees would not see or smell an argon leak. 

Within minutes of a leak, oxygen levels can fall from typical levels to deficient levels, which means that the air in the environment does not have enough oxygen for respiration. Employees can experience fatigue, dizziness, cognitive confusion, and respiratory distress. A few breathe of oxygen deficient air can render someone unconscious. Once an employee loses consciousness, the risk is death via asphyxiation. 
By tracking levels of oxygen using an oxygen monitor, employers can prevent workplace accidents and injuries and protect the well-being of their employees. An oxygen deficiency monitor tracks oxygen levels 24/7 and provides fast notification if oxygen levels plummet due to an inert gas leak. 

Just as these gases can leak in the semiconductor manufacturing plant, they can leak at the gas distributor as well. Leaks arise when storage equipment and supply lines develop holes, when storage dewars are not properly sealed, or when the equipment is used in a manner for which it was not originally intended or designed.

While end manufacturers are well aware of the risks of an oxygen deficient environment, there is less talk of the need for protection in gas distribution facilities. Wherever He, Ar, and N2 are used or stored, oxygen monitors should be installed as a precaution. 

How an Oxygen Deficiency Monitor Works

An oxygen deficiency monitor has a built-in alarm to provide LED and sound alert when oxygen levels fall to the critical defined threshold, which is 19.5 percent. PureAire's monitors work in confined spaces, including basements and freezers, and function at temperatures of -40 C. PureAire's oxygen monitors are built to withstand 10+ years of use without subjectivity to barometric pressure shifts or temperature changes. The zirconium sensor needs no annual maintenance or calibration.

If you're looking for a reliable product that is easy to use out of the box, consider PureAire's O2 monitor. Learn more about PureAire's oxygen deficiency monitor or read customer testimonials at https://www.pureairemonitoring.com or www.oxygenmonitors.com

Source:

http://summitsourcefunding.com/blog/helium-is-a-critical-part-electronics-supply-chain 
https://www.onsitegas.com/semi-conductor-nitrogen.html