Showing posts with label Oxygen deficiency Monitor. Show all posts
Showing posts with label Oxygen deficiency Monitor. Show all posts

Thursday, June 22, 2023

Biorepository Safety

 


What is a Biorepository?

A biorepository, or "biobank",  is a specialized facility designed to store, archive, and distribute biological samples for research or clinical purposes. Biorepositories house biological samples, such as blood, plasma, urine, saliva, tissues, DNA, and organs, among other specimen types, collected from consenting individuals. Critical associated information, including relevant health information about the donor, is linked to the sample, given a unique identifier, and uploaded into a laboratory information management system. Scientists use samples stored in biorepositories to research diseases and develop new treatments, drugs, and vaccines, among other applications. Biorepositories provide secure environments that help ensure the integrity of the samples stored within, and allow researchers an efficient way to access the samples they need for their studies.

How are Biological Samples Stored?

Cryopreservation is the most commonly used method for freezing and storing biological samples.  This method most often uses liquid nitrogen (LN2) to achieve the ultra-low temperature necessary for cryopreservation, usually between -80°C and -196°C. Biorepositories use cryogenic freezers and LN2  to achieve and maintain the super-cold temperatures required for long-term sample storage.

Biorepositories must rely on a continuous supply of LN2 to ensure that samples stay fully frozen in order to preserve their integrity and usability. Liquid nitrogen is typically supplied through liquid nitrogen generators or bulk tanks located outside the facility, or from cryogenic cylinders or Dewar vessels located inside near the freezers.

Liquid Nitrogen Safety - Oxygen Monitors Can Reduce Risk

Cryopreservation ensures that the samples remain viable for future use. However, since LN2 is an oxygen-depleting gas that is both odorless and colorless, absent appropriate monitoring, biorepository personnel would be unable to detect a liquid nitrogen leak if one were to occur in a gas cylinder or supply line. When there is not enough oxygen in the air, persons working in the area can become disoriented, lose consciousness, or even suffocate from lack of oxygen. Additionally, a liquid nitrogen leak could lead to the loss of its super-cooling properties, causing the temperature to rise inside the freezer, possibly causing catastrophic damage to the biological samples.

As such, best practice calls for oxygen deficiency monitors to be installed anywhere there is a risk of nitrogen gas leaks. The National Institutes of Health’s Design Requirements Manual stipulates that, to warn of oxygen depletion, oxygen monitoring equipment is to be provided in freezer rooms and other rooms where cryogenic fluids (including liquid nitrogen) are supplied or stored.

PureAire Monitors


PureAire Monitoring Systems’ Oxygen Deficiency Monitors continuously track levels of oxygen and will detect liquid nitrogen leaks before freezer failure jeopardizes either the integrity of stored samples or employee health. Built with zirconium oxide sensor cells to ensure longevity, PureAire’s O2 Monitors can last, trouble-free, for over 10 years under normal operating conditions.  In the event of an LN2 gas leak, and a decrease in oxygen to an unsafe level, our Monitor will set off an alarm, complete with horns and flashing lights, alerting employees to evacuate the affected area.

The Oxygen Monitors should be placed wherever liquid nitrogen is stored, and in all rooms and areas where nitrogen is used.

PureAire Oxygen Monitors measure oxygen 24/7, with no time-consuming maintenance or calibration required.

Each PureAire O2 Monitor has an easy to read screen, which displays current oxygen levels, for at-a-glance readings by biorepository personnel, who derive peace of mind from the Monitor’s presence and reliability.


Monday, September 26, 2022

PureAire Introduces New Dual Oxygen/Carbon Dioxide Monitor

 PureAire Monitoring Systems is excited to introduce its new Dual Oxygen/Carbon Dioxide Monitor, an important addition to our full line of Oxygen Deficiency Monitors, Carbon Dioxide Monitors, and Combustible/Toxic Gas Detectors.  Our new Monitor is designed for continuous monitoring of oxygen and carbon dioxide levels  across a wide variety of applications, including cryogenic facilities, breweries, food processing plants, cannabis grow rooms, pharmaceutical manufacturing operations, laboratories, hospitals, and universities.

Our Dual Monitor can sample O2/CO2 levels from up to 100 feet away and is ideal for facilities that use inert gases, including, but not limited to, nitrogen, helium, and argon. Its NEMA 4X/IP66 dust-tight and water-tight enclosure will protect the Monitor against dust, water, and damage from ice formation.

PureAire’s new Dual O2/CO2 Monitor continually measures oxygen levels from 0-25%, and carbon dioxide levels from 0-50,000 parts per million (ppm), with both O2 and CO2 measurements readily visible on the Monitor’s easy-to-read backlit displays. Depending on our customers’ specific requirements, the Monitor can be linked to a programmable logic controller (PLC), a multi-channel controller, or tied into building systems themselves.

The new O2/CO2 Monitor features dual built-in LED visual alarms, two alarm level set-points for both O2 and CO2, as well as two relays for each monitored gas. The Monitor responds in seconds to changes in oxygen and carbon dioxide levels, and it will remain accurate over a wide range of temperature and humidity levels.

PureAire’s Dual Oxygen/Carbon Dioxide Monitor offers thorough air monitoring, with no time-consuming maintenance or calibration required. Built with durable, non-depleting, zirconium oxide sensor cells, and non-dispersive, infrared (NDIR) sensor cells to ensure longevity, PureAire’s Dual O2/CO2 Monitor can last, trouble-free, for 10+ years in normal working conditions.

Sunday, November 29, 2020

What are Oxygen Deficiency Monitors?




What is an Oxygen Deficient Environment?

The Occupational Safety and Health Administration (OSHA) defines an environment in which oxygen levels fall below 19.5 percent as an oxygen-deficient atmosphere, which should be treated as immediately dangerous to health or life. When there is not enough oxygen in the air, persons within the affected area may become disoriented, lose consciousness, or even suffocate due to the lack of sufficient oxygen.

An oxygen-deficient environment may be created when oxygen is displaced by inert gases, such as nitrogen, helium, argon, or carbon dioxide. Therefore, manufacturers and other organizations utilizing inert gases in their operations need to successfully navigate complex working environments in which high concentrations of such gases may be critical to production procedures, but where the risks of oxygen deficiency may pose a potential safety hazard for their employees.

Fortunately, by utilizing a top-quality oxygen deficiency monitor, facility managers can maintain stringent processing requirements, as well as protect the health and safety of their personnel.

What is an Oxygen Deficiency Monitor?

An oxygen deficiency monitor is a device that measures oxygen levels in a particular area. By continuously tracking oxygen levels, oxygen deficiency monitors are designed to detect gas leaks from oxygen-depleting gases before employee health is jeopardized.

A number of gases, including nitrogen, helium, carbon dioxide, and argon, among others, are odorless, colorless, oxygen-depleting gases. As such, unless they are using a reliable oxygen deficiency monitor, personnel would likely be unable to detect a gas leak should one occur in a gas cylinder or line.

Which Industries Should Use Oxygen Deficiency Monitors?

Oxygen deficiency monitors contribute to safe working environments in any scientific or industrial application utilizing oxygen-depleting gases and, therefore, requiring continuous monitoring of oxygen levels. For instance:

  • The medical industry uses inert gases for a variety of purposes, including MRI facilities, performing cryosurgery, in-vitro fertilization, and cryostorage facilities, and for blood and tissue preservation, while laboratories typically use compressed gases including argon, nitrogen, and carbon dioxide.
  • Pharmaceutical manufacturers depend upon gases such as nitrogen and carbon dioxide to maintain sterile environments throughout the drug manufacturing and packaging processes.
  • The food and beverage industries rely on carbon dioxide and nitrogen gas for a range of uses. By way of example, carbon dioxide carbonates beverages in bars, fast-food establishments, and restaurants, and it is a critical component in the productions of soft drinks and beer. Nitrogen gas is important in food preservation processes, where it is used to remove oxygen from the manufacturing environment, extend product shelf life, and decrease the likelihood of spoilage.
  • Semiconductor fabricators and foundries must closely monitor process gas levels, as an improper amount of gas can ruin the quality and integrity of the components and devices being manufactured.

The foregoing bullet points highlight just a few of the industries that need oxygen deficiency monitors as part of their daily operations. Others include aerospace, cryotherapy, additive manufacturing, research and development, alternative fuel, waste management, and the oil and gas sectors.

PureAire Oxygen Deficiency Monitors

PureAire Monitoring Systems’ line of oxygen deficiency monitors offer thorough air monitoring, with no time-consuming maintenance or calibration required. Our monitor continuously tracks oxygen levels and, in the event of a gas leak and a drop in oxygen to an OSHA action level, will set off an alarm, complete with horns and flashing lights, alerting employees to evacuate the affected area.

The monitor will remain accurate at temperatures as low as -40C. PureAire’s durable, non-depleting, long-life zirconium oxide sensor will last for 10+ years in a normal environment without needing to be replaced.

Where Should Oxygen Deficiency  Monitors Be Installed?

Oxygen deficiency monitors should be installed 3 to 5 feet away from a gas cylinder or gas line, and in any location where there is a risk of gas leaks that may cause a drop in oxygen to an unsafe level.  So that employees can see the monitors and verify their performance, the monitors should typically be mounted 3 to 5 feet off the ground.

There are many other configurations for mounting. For instance, PureAire oxygen deficiency monitors can sample oxygen levels from up to 100 feet away using ¼  inch tubing, or be installed within a glovebox, freezer, gas line, sealed chamber, or even below ground level. PureAire oxygen deficiency sensors can be mounted directly in vacuum chambers with the use of a KF25 vacuum fitting.

How Many Oxygen Deficiency Monitors Do I need?

To ensure safety, PureAire generally recommends that one monitor be installed for approximately every 400 square feet of your facility’s space. However, since cryogenic gases, such as argon, helium, and nitrogen, are unpredictable, we encourage you to contact PureAire for additional guidance specific to your needs.




Friday, March 27, 2020

Protecting Precious Cargo: Safety Monitoring at IVF and Cryogenic Facilities


Overview

In March 2018, at two separate fertility clinics, one in Clevelandand the other in San Francisco, the cryogenic tanks storing eggs and embryos malfunctioned, resulting in devastating losses for couples hoping to conceive children.

Nationwide, as of December 2019, there were more than 440 sites that store embryos or eggs in specialized storage tanks of liquid nitrogen, but there are no national laws--and few state standards--governing how, or for how long, the reproductive materials contained therein must be stored.

Publicized failures that have caused the destruction of over 4000 patient eggs, embryos, sperm, and reproductive tissue have heightened the awareness of patients, laboratories, and storage entities to the potential risks and liabilities of cryostorage.

In recent years, as certain health plans and insurance companieshave increased coverage offertility treatments, more couples have turned to fertility clinics to improve their chances of starting families.

How Oxygen Monitors Protect IVF and Cryogenic Facilities 

Wherever liquid nitrogen (LN2) is used, there are risks associated with nitrogen leaks. Nitrogen displaces oxygen, and a leak deprives the air of oxygen, thereby creating a potential health hazard for storage facility staff. When there is not enough oxygen in the air, persons working in the area can become disoriented, lose consciousness,or even suffocate due to the lack of oxygen. Since nitrogen lacks color and odor, there is no way for employees to detect a leak using the senses. Moreover, a nitrogen leak could lead to failure of the cryopreservation tanks storing genetic materials. In order to ensure the safety of employees, and the viability of the materials, in vitro fertilization (IVF) and cryopreservation facilities rely on oxygen monitors.

According to the National Center for Biotechnology Information, facilities using liquid nitrogen should implement a series of quality control steps to monitor LN2 levels and refill tanks as necessary for proper cryostorage maintenance. Among the recommendations is the installation of oxygen monitors to avert or minimize the effects of potentially serious cryostorage accidents caused by LN2 leaks.

PureAire Oxygen Monitors

PureAire Monitoring Systems’ oxygen monitors continually sample the air, taking periodic readings of current oxygen levels. PureAire oxygen monitors are ideally suited for use in acryogenic storage facility, because the monitors can withstand temperatures as low as -40C.

In the event of a nitrogen leak, and a decrease in oxygen to a pre-set alarm level, thePureAire monitor’s built-in horn will sound, and lights will begin to flash, thereby providing notification to the facility staff of the possible impending danger to the precious stored materials. The same alert enables employees to take care of their own personal safety, including exiting the area, if necessary.

Best practice calls for oxygen monitors to be placed wherever nitrogen is used or stored.
PureAire Monitoring Systems monitors feature long-lasting zirconium sensors, which are designed to provide accurate readings, without calibration, for up to 10 years. Cryogenic facilities appreciate the ease of use and reliability of PureAire Monitoring Systems products.

Friday, February 22, 2019

New Solar Cell Technology to Help lower prices for the consumer



Inkjet Perovskite solar cells may help shape the future of energy production by lowering costs, and transparency.

Solar panels used to be costly and time-consuming to produce—and quite expensive on the consumer side. New technologies have driven costs as well as production time down, to the benefit of consumers. See what's new with solar panels and where the solar cell technology is going. 

New Solar Panel Developments

In traditional solar panels, silicon acts as a semiconductor. By doping the silica material with gallium and arsenic impurities, the silicon-based solar panel is able to capture solar energy and convert the sun's energy to electricity. While there are other materials that can act as semiconductors for solar energy, silicon is ideal because is forms an oxide at high temperatures. The oxide makes it easy to product consistent, high quality solar panels. The latest generation of solar cells use perovskite rather than silicon.

In 2009, researchers first discovered that perovskite could also be used to make photovoltaic solar cells. Despite the potential of this discovery, perovskites weren't considered a good choice for solar panels, because the materials needed to be heated to such high temperatures that very few materials could be coated with the perovskite solution. Glass could withstand the high heat, but a glass solar panel would be an impractical product for obvious reasons.

A young scientist recently discovered a new way to work with perovskites. Using an evaporation method, Polish scientist Olga Malinkiewicz, was able to coat flexible foil with perovskites. To speed the substrate drying process, nitrogen was used. By blowing dry nitrogen gas over the wet perovskite film, the resulting evaporation happened faster and more consistently. Without utilizing nitrogen in the process, the panels could have an inconsistent coverage, which would lead to poor energy conversion rates. 

The resulting solar panels were thin and flexible, both in their material application and their use cases. Imagine a portable solar panel that could attach to a laptop, drone, or car, something that could capture the sun's energy indoors or outdoors and travel with you, to power whatever you needed. 

Since her initial discovery, Malinkiewicz has refined the approach. The latest generation of perovskite solar cells are created with an inkjet printing procedure which makes them faster and cheaper to produce. With mass production feasible from an economic perspective, the perovskite solar cells can be a popular option to add electricity to areas that do not have an underlying power grid, whether that's rural communities or developing countries.

The technology is still being refined, so you won't see widespread perovskite solar cells just yet. However, researchers are cheering the innovation and its potential to revolutionize energy distribution.

One thing to consider moving forward with perovskite solar panels is the use of nitrogen in the process. Anywhere nitrogen is used, there's a safety risk should the gas leak from supply lines. 

How an Oxygen Monitor Can Help Detect Nitrogen Gas Leaks

Nitrogen leaks create health risks because nitrogen displaces oxygen, which humans need to breathe. Undetected, a nitrogen leak could create oxygen-deficient air, leading to respiratory distress and eventually death via asphyxiation. Nitrogen gases is both colorless and odorless, which means it would be impossible to detect a leak relying on the senses.

The easiest way to detect a leak is to measure ambient oxygen using an oxygen monitor. Oxygen monitors continually track levels of oxygen, sounding an alarm if levels fall to the OSHA threshold where safety is at risk. With flashing lights and a loud alarm, workers will be able to exit the room before the onset of health problems. 

PureAire creates industry-leading oxygen monitors that last for 10 or more years, with no calibration or maintenance needed. Learn more or view product specs at www.pureairemonitoring.com.




Monday, February 11, 2019

Pepsi Is Launching the First Ever “Nitro Soda”



Nitrogen-infused or nitro beverages have been among the biggest trends in the beverage industry. There's been no shortage of nitro cold brew coffees and nitro beers, but never a nitro soda—until now, with the launch of Nitro Pepsi. The new beverage was sampled at the 2019 Super Bowl and while you won't find it on tap just yet, here's what you can look forward to.

Introducing Nitro Pepsi 

Nitro Pepsi aims to revolutionize the most signature aspect of soda, which is the carbonation.

CO2 gas is responsible for creating the tangy bubbles that give soda its texture and mouthfeel. Nitrogen creates bubbles that are smaller and softer, for a creamier mouthfeel in the drink. The creamy experience naturally complements sweet, malty beer styles like stouts and porters, as well as cold brew coffees.

Translated into Pepsi, the nitrogen bubbles create a beverage that's reminiscent of an ice cream float (with that creamy sweetness). The drink will be available in two flavors, original Pepsi and vanilla. Pepsi recommends drinking the Nitro Pepsi cold, but not over ice.

With its new nitro soda, Pepsi hopes to transform the soda drinking experience, much the way that craft beer and coffee have been transformed by nitro drinks, and introduce their brand to a new audience of consumers.

While there's a lot of excitement around the new beverage, there are also some risks to consider, due to the use of nitrogen gas. Nitrogen is naturally dense and will displace oxygen in the environment. If the bottling plant experiences a nitrogen leak, this means that oxygen within the bottling plant will be pushed out of the air, creating a public health hazard.

Nitrogen gas is colorless and odorless, so employees would not be able to spot the leak. When oxygen levels first begin falling, employees will not notice any symptoms. By the time oxygen levels dip to the point where health is at risk, employees may begin to experience cognitive confusion or suffer respiratory distress. With oxygen deprivation, there's a risk of losing consciousness or suffering death via asphyxiation.

Preventing Nitrogen Leaks With a Dual O2/CO2 Monitor

While the nitrogen leak cannot be detected, what can be tracked is the level of oxygen in the room. By paying attention to oxygen levels and alerting employees when levels fall below the safe threshold, as defined by OSHA, a dual O2/CO2 monitor protects public health. Not only are these alarms required by OSHA where inert gases like nitrogen are used, they are the easiest way to protect employees from workplace hazards and deliver peace of mind in the plant bottling area.

The O2 monitor works by sampling the air to check oxygen levels. As long as oxygen levels are within the safe zone, the monitor is silent. With PureAire products, the monitor always displays readouts on a screen, so employees can check oxygen levels at a glance.

If a nitrogen leak develops and oxygen starts to fall, the monitor will flash lights and sound an alarm so that employees have ample warning to evacuate the area. Plant workers can then alert emergency services, who can respond to the leak.

There are many O2 monitors on the market, but PureAire's are unique for their construction. PureAire O2 monitors and dual O2/CO2 monitors feature zirconium sensors, which offer 10 or more years of reliable performance with no calibration. PureAire monitors do not need calibration or maintenance. All that's needed is to unbox the monitor, mount it on the wall, and plug it in to enjoy continuous oxygen monitoring and superior leak detection.

PureAire's O2 monitors are industry leading for their quality, construction, and performance. To learn more about PureAire’s dual O2/CO2 monitor or oxygen monitor, visit www.pureairemonitoring.com.

Wednesday, February 6, 2019

How Many Oxygen Monitors Should Be Installed? Where Should I mount one?


While OSHA regulations require the use of an oxygen monitor anywhere that compressed gases or cryogenic liquids are used or stored indoors, the regulation does not provide sufficient detail for facilities on how to set up am oxygen monitor. Businesses want to comply with the regulations, but are left wondering what compliance looks like. At PureAire, we're often asked by our customers, "how many oxygen sensors should installed?" so we thought we'd provide clarification on where and how to mount oxygen monitors.

Where an Oxygen Deficiency Monitor Should be Used

OSHA regulations require that oxygen deficiency monitors be placed in any room where compressed gases are used or stored. Storage areas are frequently outside or in confined spaces, such as basements or storage closets.

When gas tanks are installed outside and the gas enters the facility by pipes, we recommend oxygen deficiency monitors be installed near the main gas connections, which is where the gas enters the facility. This might be near a machine, a food and beverage packaging dispensing machine, a 3D printer, or other tool.


With respect to a confined space where dewars of gas are kept, the oxygen deficiency monitor should be installed directly in the storage area. PureAire's oxygen monitors are designed to function optimally in confined spaces, including cryogenic freezers, and are impervious to shifts in barometric pressure. As such, they take accurate readouts of oxygen levels in confined spaces, freezers, facilities, and other places.

The oxygen monitors measure  5.12 inches wide by 4.5 inches high by 3.25 inches deep, and their small size means that they're quite easy to place about the facility, even if you need to place the O2 monitor in a tight confined space, such as a cryogenic freezer.

Best Place to Mount an Oxygen Deficiency Monitor 

Best practice is to mount the oxygen deficiency monitor 3 to 5 feet off the ground, as well as 3 to 5 feet away from a gas cylinder.

There are situations when the oxygen monitor should be placed further away. One common example is MRI rooms, where metal is prohibited due to the strength of the MRI magnet. In these circumstances, the oxygen deficiency monitor can be mounted outside of the room, and a plastic sample draw tube used to check oxygen levels inside the MRI room.

What is the Proper Spacing of Oxygen Monitors? 

This last question may be the trickiest question to answer. Nitrogen and other inert gases have no odor or color, so they cannot be seen. The difficulty here is that it's all but impossible to say where the gas will go if there is a leak.  

We recommend that you place one oxygen deficiency monitor every 400 to 600 square feet to be safe. This works out to every 20 to 30 feet in a large space. When you use this ratio to determine the right number and spacing of oxygen monitors for your facility, you'll be adequately covered just in case anything happens. Given the deadly consequences of a nitrogen leak, it's better to be safe than sorry.  

PureAire creates oxygen deficiency monitors that are capable of withstanding some of the toughest conditions. Oxygen deficiency monitors from PureAire are designed to operate in temperatures as low as -40 C up to 55 C.     

Oxygen deficiency monitors can last for 10 or more years with no calibration. The hardy zirconium sensor needs no calibration after installation, which means that setup couldn't be easier.  

PureAire's monitors are accurate to +/- 1 percent and come with two alarm levels, 18 percent and 19.5 percent. The integrated alarms provide sufficient notification for workers to evacuate the area. The LCD display is backlit so it's easy to read. 

All PureAire O2 monitors come with a 3 year warranty. Wall mounting brackets and an optional plug-in wall power supply are included, so you can mount the unit upon receipt and protect your facility from dangerous gas leaks.

To learn more about PureAire's oxygen deficiency monitors, visit www.pureairemonitoring.com.

Thursday, December 27, 2018

How to Monitor Oxygen Levels in a Room?




If you're wondering how to monitor oxygen levels in a room, look no further than an oxygen monitor. Learn how to use an oxygen monitor, where you install an oxygen monitor, and why this one little device could save a life. 

Why Should I Measure Oxygen Levels in a Room? 

Before we can answer the question of how to measure oxygen levels in a room, we must look at why you're measuring oxygen levels in a room. 

Humans need oxygen to breathe. The air's natural oxygen concentration is around 21 percent; however, natural oxygen in the air can be displaced by certain gases, including nitrogen and argon. If nitrogen were to leak in a closed space, oxygen levels would fall. Since nitrogen and other inert gases have no color or odor, it's not as if you can spot a nitrogen leak occurring. 


When oxygen levels fall below the safe threshold, which is 19.5 percent, health hazards may occur. With only a few breaths of oxygen deficient air, you could fall unconscious and suffocate. Given these safety risks, leak detection systems are necessary. 

What is an Oxygen Monitor? 

An oxygen monitor is a device that measures oxygen levels in the room, to ensure the air has enough oxygen for respiration. Also called an oxygen deficiency monitor or an O2 monitor, an oxygen monitor uses a sensor to measure oxygen levels. By tracking oxygen levels, gas leaks can be detected even though the leaking substance cannot be seen or smelled. 

Oxygen monitors come with a range of features, including built-in alarms that go off when leaks occur. There is usually a loud alarm (designed to be heard over machine noise) as well as a flashing light. 

Oxygen levels differ in their setup and maintenance needs, which makes the question of how to use an oxygen monitor a little more challenging to answer. Some brands of oxygen monitor require annual maintenance and calibration. Other styles of oxygen monitor, such as those sold at PureAire, do not need calibration after installation. PureAire's O2 monitors are designed to work efficiently and accurately for 10 or more year after installation, saving time and money. 

Where You Install an Oxygen Monitor? 

Oxygen monitors should be installed anywhere there is a risk of gas leaks. Place one oxygen monitor in any room where you store inert gases and in any room where these gases are used. This way, if you have a helium, argon, or nitrogen spill -- for instance, in a university science lab -- the oxygen sensor will detect the lower levels of oxygen and sound the alarm. 

How do You Install an Oxygen Monitor?

Oxygen monitors can be mounted on the wall using a bracket and screw, then connected via plug-in-the-wall power supply. Alternately, oxygen monitors can be hardwired with the services of an electrician. It's your choice. We recommend that oxygen monitors be installed 3 to 5 feet off the ground, and 3 to 5 feet away from any obstacle, such as a gas tank. 
Oxygen monitors deliver peace of mind that your employees and your facility are protected from the hazardous side effects of a gas leak. They may be required by industry regulations. To get an industry-leading oxygen monitor that's maintenance-free, look to PureAire.


Wednesday, December 26, 2018

Where Can I Buy an Oxygen Monitor?



You know you need an O2 monitor, but where do you get one, and how much does it cost?  Selling oxygen deficiency monitors is our business, so we've rounded up information to choose the right oxygen deficiency monitor for your needs. 

Who Should Use an Oxygen Deficiency Monitor? 

An oxygen deficiency monitor should be placed anywhere that inert gases, such as argon or nitrogen, are used or stored. Industries that use an oxygen deficiency monitor include: 

  • Research & development – Laboratories often perform testing using nitrogen, argon, or CO2.
  • Medical gases- Used in hospitals, or labs requiring ultra-purity (99.9%) inert gases or nitrogen gas.
  • MRI facilities- Helium gas surrounds the MR magnet to protect from overheating while in operation.
  • Pharmaceutical- Nitrogen is used in cryogenic freezers and CO2 or dry ice is commonly used for shipping heat sensitive prescription drugs.
  • Cryotherapy- Nitrogen gas is used to create on-demand low temperatures quickly for therapy. Used for treating people to reduce inflammation.
  • Cryopreservation- N2 gas is used in the process of cooling and storing cells, tissues, or organs at very low temperatures to maintain their viability.
  • Universities- Many schools specializing in medicine, sciences, or aerospace require nitrogen gas, argon gas, or carbon dioxide for experiments and long-term research.
  • Semiconductor- Ultra purity nitrogen gas or other inert gases are required to reduce corrosion and oxidation on wafers or in semiconductor tools.
  • Food & Beverage- Nitrogen gas or CO2 is used to rapidly flash freeze food, or increase the shelf life of packaged foods and beverages.
  • OLED- Nitrogen gas is used to reduce oxidation in printing chambers maintaining the quality of the substrate.
  • 3D Printers- Argon gas and nitrogen gas are used in printers to reduce corrosion and protect metals from being a source of ignition, most commonly titanium metals.

What is an Oxygen Monitor Alarm?

An oxygen monitor alarm goes off if oxygen levels fall to a critical threshold, which is defined by OSHA as below 19.5 percent. 

The type of alarm varies by the specifications of the oxygen deficiency monitor you're considering. At PureAire, our oxygen monitors have two alarm levels, for 19.5 percent and 18 percent. The built-in alarm operates at 90 decibels, so workers can hear the alarm over facility noise. The optional horn and strobe combination amplifies the alarm. 

Alarm relays link alerts with third party communication systems, such as control panels, PLCs, or fire alarm systems for maximum versatility. 

How Much Does an Oxygen Monitor Cost?

Oxygen monitors range in price from $1,500 to $4,500, depending on if you need percentage or ppm accuracy. 

Where Can I Buy an Oxygen Monitor? 

Now that you understand the different features available in an oxygen monitor, as well as who should have an O2 monitor, you're ready to research and buy. We're partial to PureAire products, but we always recommend that you review the specifications of any oxygen deficiency monitor so you understand what features the product has and whether it's right for you. PureAire includes a sensor lasting 10 year or more which is usually more desirable when you’re planning on using an oxygen monitor longer than 2 to 3 years.

You can buy an oxygen deficiency monitor online from the manufacturer, directly though distributors, and through commerce outlets as well. 


PureAire works with various distributors such as Airgas, Air Liquide, Linde, Air Products, Fisher Scientific, and Johnson Controls.

One note of caution here, especially if you use the internet to research oxygen monitors. A number of products may come up when you search for O2 monitors that are NOT the correct product to detect gas leaks. You may find search results for the following products when you begin to look for oxygen monitors online: 

  • Finger oxygen monitor
  • Blood oxygen monitor 
  • Pulse oximetry monitor 
  • Oximeter
  • Baby monitor 

As you may guess from the names, these other monitors are commonly used in medical and pharmaceutical settings. The price point will be far less than what you would spend for the type of oxygen monitor we're talking about. The other oxygen monitors are also found in stores and online at pharmacies: Walgreens, Target, CVS, and the like. 

When you review the product specifications, make sure the product you've found does what you need it to do: Monitor levels of oxygen in the air to detect a gas leak that could harm your facility and workers. 
If there are other questions you have about shopping for an oxygen deficiency monitor, we're here for you. Chat with us online or email us today. 


Tuesday, October 2, 2018

Gas Distributors and Specialty Gas Suppliers Are the Key to Technology Companies



The technologies that power laptops, smartphones, LED televisions, and other technologies rely on one hidden ingredient: Gas. Compressed and inert gases help create a pure environment, control the temperature, and carry other substances for a high-quality end product. See how the different gases used play a pivotal role in technology product development and also how they introduce health and safety risks into the workplace. 

Compressed Gases Used in Technology Devices 

The most common compressed gases used in technologies include argon (Ar), helium (He), and nitrogen (N2). 
Liquid and gas helium have a range of uses in science, laboratory, manufacturing, and technology settings. Within the semiconductor industry, helium keeps the manufacturing environment pure so that no unwanted chemical reactions occur. Since helium conducts heat efficiently, it stabilizes the temperature when silicon is introduced in the semiconductor manufacturing process. Helium's ability to cool quickly aids in a range of uses, from chilling semiconductor wafers to keeping an MRI magnet cool.  

Nitrogen (N2) gas aids with the liquidous stage of semiconductor manufacturing, where the solder is wetting the surface to create a good bond. Since nitrogen flushes out oxygen, it's also used during the purging process. 

Some semiconductor manufacturing facilities have opted for nitrogen generations onsite rather than N2 delivery from a commercial gas supplier. Since nitrogen is one component of air, it can be distilled for purity onsite using a generator. 

Like helium (He) and nitrogen, argon or Ar is inert. This gas is introduced in the sputtering phase of semiconductor manufacturing. Since argon maintains a highly pure environment, it prevents silicon crystals used in semiconductors from developing impurities. 

To source these gases, semiconductor, LED, and other manufacturers turn to compressed gas providers, who offer on-demand delivery of combustible gases. The chief gas distributors include Praxair, Airgas, Air Liquide, Linde, Matheson Tri-gas, and BOC.

The Hidden Dangers of Specialty Gas

While these specialty gases are highly useful, there is a danger associated with their use. Helium, nitrogen, and argon all deplete oxygen from the air. In the manufacturing process, this is a desired trait. Oxygen can cause flaws in the final product. 

Where trouble starts is when leaks occur and the specialty gas escapes into a closed room. Leaks can develop in supply lines, storage canisters, or nitrogen generators. These gases have no scent or color, so employees would not see or smell an argon leak. 

Within minutes of a leak, oxygen levels can fall from typical levels to deficient levels, which means that the air in the environment does not have enough oxygen for respiration. Employees can experience fatigue, dizziness, cognitive confusion, and respiratory distress. A few breathe of oxygen deficient air can render someone unconscious. Once an employee loses consciousness, the risk is death via asphyxiation. 
By tracking levels of oxygen using an oxygen monitor, employers can prevent workplace accidents and injuries and protect the well-being of their employees. An oxygen deficiency monitor tracks oxygen levels 24/7 and provides fast notification if oxygen levels plummet due to an inert gas leak. 

Just as these gases can leak in the semiconductor manufacturing plant, they can leak at the gas distributor as well. Leaks arise when storage equipment and supply lines develop holes, when storage dewars are not properly sealed, or when the equipment is used in a manner for which it was not originally intended or designed.

While end manufacturers are well aware of the risks of an oxygen deficient environment, there is less talk of the need for protection in gas distribution facilities. Wherever He, Ar, and N2 are used or stored, oxygen monitors should be installed as a precaution. 

How an Oxygen Deficiency Monitor Works

An oxygen deficiency monitor has a built-in alarm to provide LED and sound alert when oxygen levels fall to the critical defined threshold, which is 19.5 percent. PureAire's monitors work in confined spaces, including basements and freezers, and function at temperatures of -40 C. PureAire's oxygen monitors are built to withstand 10+ years of use without subjectivity to barometric pressure shifts or temperature changes. The zirconium sensor needs no annual maintenance or calibration.

If you're looking for a reliable product that is easy to use out of the box, consider PureAire's O2 monitor. Learn more about PureAire's oxygen deficiency monitor or read customer testimonials at https://www.pureairemonitoring.com or www.oxygenmonitors.com

Source:

http://summitsourcefunding.com/blog/helium-is-a-critical-part-electronics-supply-chain 
https://www.onsitegas.com/semi-conductor-nitrogen.html

Tuesday, March 6, 2018

How Do Potato Chips Stay So Fresh In The Bag?




Chip bags have all that air in them for a valid reason — and it's not air, anyway, it's nitrogen gas. 
So what is this gas doing in your bag of crisps? First, the gas acts as a preservative so your chips are as crispy when you open the bag as the day they were packaged. Next, the gas also gives the chips a cushion. In what's known as slack fill, chips manufacturers intentionally inflate the package with nitrogen gas to protect it from damage in transit. Without the cushion of nitrogen gas, chips would likely wind up at their final destination as a bag of crumbs, because the chips inside the bag would break through being stacked in transit or packed onto a grocery store shelf. 

Nitrogen gas is piped into the chip bag before packaging. The gas displaces oxygen from the bag, which is then filled with chips and sealed. Without this step, chips would have a much shorter shelf life. Oxygen in the bag would cause the chips to stale and humidity found in air would lead to soggy crisps — no signature crunch.

While nitrogen gas does play an important role in keeping chips fresh and full-sized, there is a danger in using this gas. Not to the chips — since nitrogen lacks odor, color, and flavor—but to the employees in the processing plant. Nitrogen preserves the chips' texture because it displaces oxygen. If nitrogen leaks in the packaging facility, it will displace ambient oxygen — eventually causing levels to fall so low they threaten employee health. 

Workers become confused and dizzy when they breathe air that lacks sufficient oxygen. Oxygen-deficient air also causes respiratory problems and can lead to death via asphyxiation. 
The same properties that made nitrogen a good choice for preservation — lack of color, odor, and taste — mean employees cannot detect a leak until it is too late. 
Fortunately, there's a simple and reliable way to make sure food packaging facilities aren't leaking nitrogen: Using oxygen sensors to measure the amount of oxygen in the air. 

How an Oxygen Deficiency Monitor Protects Food Packaging Plant Workers

An oxygen monitor tracks oxygen levels in the facility, which should be stable as long as there is no gas leak. Since nitrogen gas displaces oxygen, oxygen levels will fall in the event that nitrogen starts to leak. When oxygen levels fall below safe thresholds — which are defined by OSHA as 19.5 percent — the oxygen monitor will sound an alarm. Employees will be able to leave the packaging floor and alert emergency personnel before the situation turns deadly. 

For peace of mind, employees can check the levels of ambient oxygen by looking at the face of the monitor. A silent monitor — with no loud alarms or flashing lights — indicates that all is well. Lights and loud noises mean staff should stop what they are doing and vacate immediately. 

To properly protect employees, one oxygen deficiency monitor should be installed in any room where nitrogen gas is used or stored. Facilities that use nitrogen generators to produce nitrogen on demand also need an oxygen sensor near the generator. 

PureAire's oxygen deficiency monitors are a cost-effective long-term solution to nitrogen leaks in food packaging plants. These monitors provide accurate readouts even when temperatures are as low as -40 Celsius, and operate reliably even in confined spaces, including freezers and basements. 

PureAire's monitors feature a zirconium sensor, which requires no maintenance and no calibration after installation. PureAire's O2 monitors provide consistent readouts regardless of the weather or barometric pressure, which makes them reliable solutions for safety-minded employers. 

If you are looking for an oxygen monitor that is easy to use, accurate, and built to last, look to PureAire to provide solutions that protect your employees and deliver peace of mind. Browse products at www.pureairemonitoring.com.