Showing posts with label Gas monitor. Show all posts
Showing posts with label Gas monitor. Show all posts

Friday, August 14, 2020

What Are Hot Melt Adhesives? Why Are They Used and What Is the Importance Of Nitrogen Gas?


 Hot Melt Adhesives and Available Types Used in Industrial Manufacturing

Industrial hot melt adhesives are polymer-based thermoplastic resins that, when melted, are used to bond materials together. Hot melt adhesives are comprised of one or more base polymers combined with tackifiers (which provide stickiness to the adhesive), plasticizers (to provide greater flexibility), and antioxidants (for protection against degradation) to allow for stability, adhesion, and flexibility.

Industrial hot melt is available in a variety of forms, including granular or powder hot melt blocks, pellets, bags, cakes, drums, and pillows. These materials are solid at room temperature, and then heated, melted, and dispensed for a variety of industrial applications.  As the adhesive returns to room temperature, a strong bond is created, adhering the manufacturing components together.

Hot melt can be dispensed as a liquid or, by introducing an inert gas (such as nitrogen) to the hot melt, as a foam.

Industrial Hot Melt Applications

In either liquid or foam form, hot melt adhesive is used across a wide variety of industries including  aerospace; automotive; product assembly; furniture making, cabinetry, and upholstery; product packaging; book binding; and non-woven sanitary hygiene products.

Aerospace and automobile manufacturers utilize hot melt adhesives for potting electronics (a process used to protect sensitive components from impact or vibration), as well as sealing rivets, seams, and joints. Additionally, hot melt foam is used in airplanes and cars as insulation around doors and windows to reduce vibrations and noise, as well as in seat assembly.

The pages in books and magazines are kept securely bound together using HMAs. The packaging industry depends on a strong adhesive bond to keep the flaps of corrugated boxes and cartons securely closed.

Non-woven personal hygiene products are manufactured by utilizing hot melt adhesives throughout the manufacturing process, including adhering the elastic strands in the leg openings and waistbands, bonding the fabric layers together to secure and stabilize the wetness core, and affixing the fastening tapes to the waistband.

Charring

Charring is akey concern when working with hot melt adhesives, as char (degraded adhesives that have oxidized, hardened into a gel, and been blackened and burned) can negatively affect the adhesives, cause equipment failure, and lead to a shut-down in production.

Key causes of charring include overheating (typically as a result of either using a temperature that is too high for a particular hotmelt, excessive heating times, or incorrect melt tank size); oxidation (exposing the adhesives to too much oxygen), and contamination (from dirt, dust and other materials that fall into the hotmelt and burn).

Once formed, the char can break off into pieces that may clog filters and stop up spray and bead nozzles. The pieces of char can work their way onto the materials to be bonded, leaving marks, streaks, and uneven surfaces. Eventually, bits of char may get into hoses and pumps, breaking seals and scoring and damaging hoses and pump walls.

Why Nitrogen is Used for Hot Melt Adhesive

To reduce potential damage from charring, hotmelt operators may elect to blanket the adhesives with nitrogen (N2) in a process by which nitrogen, an oxygen depleting gas, is piped into the space between the hotmelt adhesive and the top of the hopper or melt tank. The nitrogen blanket protects the adhesive by creating a barrier against falling debris, and it also removes oxygen and moisture which may cause the hotmelt to oxidize and form char .

Oxygen Monitors Improves Quality Control and Helps Protect Employees

To preserve the integrity of the hot melt while blanketing with nitrogen, employees must maintain proper oxygen levels within hoppers or melt tanks, as too much oxygen can cause oxidation. Proper oxygen monitoring equipment should be placed inside melt tanks to measure and control oxygen levels.  A nitrogen leak could lead to failure of the nitrogen blanket, which could compromise the integrity of the adhesives.

Moreover, wherever nitrogen is used, the possibility of nitrogen leaks poses potential risks to humans. Since nitrogen displaces oxygen, a leak could deprive the air of oxygen, thereby creating a possible health hazard for personnel. When there is not enough oxygen in the air, persons working in the area can become disoriented, lose consciousness, or even suffocate due to the lack of oxygen. Since nitrogen lacks color and odor, there is no way, absent appropriate monitoring, for employees to detect a leak.

Best practice calls for oxygen deficiency monitors to be installed anywhere there is a risk of gas leaks. As such, oxygen monitors should be placed wherever nitrogen is stored, and in all areas where nitrogen is used.

PureAire O2 Deficiency Monitors


PureAire Monitoring Systems’ line of Oxygen Deficiency Monitors and Water Resistant Sample Draw Oxygen Monitors continuously track levels of oxygen and will alert hotmelt personnel to nitrogen leaks before employees’ health is put at risk.  In the event of a nitrogen gas leak, and a decrease in oxygen to an unsafe level, the monitor will set off an alarm, complete with horns and flashing lights, alerting employees to evacuate the area.

PureAire’s Water Resistant Sample Draw Oxygen Monitor is a self-contained oxygen deficiency system that is suitable for remote sampling of oxygen levels in confined spaces, hotmelt tanks, and other locations where remote oxygen monitoring is required. The built-in pump samples oxygen levels from up to 100 feet away.

PureAire oxygen monitors measure oxygen 24/7, with no time-consuming maintenance or calibration required. Built with zirconium oxide sensor cells to ensure longevity, PureAire’s O2 monitors can last, trouble-free, for over 10 years under normal operating conditions.Each PureAire O2 monitor has an easy to read screen, which displays current oxygen levels, for at-a-glance readings by hotmelt manufacturers, who derive peace of mind from the monitor’s presence and reliability.


Monday, September 17, 2018

Why Gas Distributors Play a Crucial Role in Most Everyday Businesses?



Inert gases power a wide range of industries, including pharmaceutical, automotive, manufacturing, and semiconductor. While argon, helium, nitrogen, and cryogenic gases have benefits and uses, there are also risks with other gases such as halogens, refrigerants, combustibles, or etching gases. Gas detectors can monitor storage areas and facilities where these gases are used to guard against gas leaks onsite. Learn why it's critical to use one of these monitors in combustible gases distribution facilities.
The Role of Gas Distributors
Unless companies are manufacturing their own gases onsite through, for instance, a nitrogen generator, they rely on prompt delivery of gases they need for operation.
Gas distributors store a range of inert gases for use by manufacturers. Industry regulations mandate that gas distributors follow certain guidelines for the storage and disposal of these substances to reduce the risk of fires, explosion, gas leaks, and other incidents.
When everything is working correctly, gas flows as its needed from the supply tank to, for instance, storage dewars which are then readied for delivery. If a supply line develops a leak or a storage tank is not properly sealed, gas will leak into the air.
Many of these gases have no smell, color, or odor. This means that even if a facility is following all regulations regarding gas storage, there is no way that an employee could detect a gas leak in the moment when something goes wrong.
If storage dewars are compromised, gas will leak in the storage truck and at the delivery site, spreading the risk to third parties.
When one of these toxic gases leaks into the air, the consequences are dangerous. Hydrofluoric acid, a highly corrosive substance, is harmful to the health when it's inhaled or in direct contact with skin. Ammonia, which is commonly used as a refrigerant and in paper making, irritates the skin, lungs, and eyes.
Some gases are flammable when in contact with oxygen, which elevates the risk of fire. Others, like nitrogen, deplete oxygen from the environment. When oxygen drops below a critical threshold, workers can experience respiratory distress, cognitive distress, and ultimately death via asphyxiation.
To provide fast notification and decrease the risk of health hazards, it is recommended to install a universal gas detector wherever toxic gases are used or stored. To further guard against leaks, gas distributors can invest in durable equipment and train staff on proper handling of substances and appropriate emergency responses.
How a Universal Gas Monitor Can Protect Your Staff
A universal gas monitor can detect levels of gases even when the eye and nose cannot.
OSHA, the Occupational Safety & Health Administration, oversees worker safety in all environments, including gas distribution plants. OSHA requirements to prevent workers from being harmed at work include the use of a gas monitor where dangerous substances are used. By installing a universal gas detector, you can bring your gas distribution plant in line with mandatory requirements to keep workers safe on the job.
Not all gas monitors are created equal. It's important to choose a gas monitor that is flexible, especially if you work with a range of substances, and reliable for continuous operation. Gas monitors that do not take accurate readings place worker health at risk, because they may fail to spot a low-level leak.
PureAire's universal gas monitor detects a wide range of gases, including:
·        Ammonia

·        Chlorine
·        Fluorine
·        Hydrogen chloride
·        Hydrogen fluoride
·        Nitrogen dioxide
·        Phosphine
·        and more


PureAire's universal gas monitor is designed to function optimally once set up with no routine maintenance. The renewable sensor lasts for 3 to 8 years on average. Unlike other monitors, PureAire's sensor is rechargeable onsite, to save your gas storage facility time and money. While employees can check interface readouts for peace of mind, the gas detector works 24/7 out of the box. If the unit experiences a problem, error readouts are related to the control room.
Since the monitor has a built-in LCD display, employees can check substance levels at a glance. Dual level alarm relay contacts allow gas distributors to choose the appropriate level for their purposes. Alarms provide employees with sufficient notification to close valves, exit the area, and reduce the risk of fire.
PureAire is an industry leader with more than 15 years of experience developing oxygen monitors and universal gas detectors. Our products provide reliable reports to increase safety and peace of mind. Learn more about our universal gas monitor and view full product specifications online.
 https://www.pureairemonitoring.com/universal-gas-detector/
https://www.pureairemonitoring.com/paint-booths-or-areas-using-combustible-gases/
https://www.chemicalsafetyfacts.org/ammonia/

Thursday, January 18, 2018

Gas Chromatography and Breathe Safely While Using Nitrogen



Gas chromatography is a process used to separate chemical compounds for analysis. The analytical chemistry process is used with gases that won't decompose when vaporized. Gas chromatography are used in a wide range of industries -- everything from forensic science to medical marijuana. While the procedure is highly useful, there are risks when working with nitrogen gas. Learn how gas chromatography works, the role nitrogen plays, and how an oxygen sensor improves safety. 

How Gas Chromatography Work

In chromatography, one gas moves over the sample substance. The moving gas is known as the mobile phase, and it's usually an inert gas, such as nitrogen or helium. As the mobile phase passes over the substance, it separates out into its component parts. Since accuracy is key, it's vital that the moving gas not react with the substance being analyzed. For this reason, inert gases are recommended for gas chromatography.

Gas chromatography takes place within a special machine, known as a gas chromatograph machine. The substance being studied is injected into the chromatograph with a syringe, then the material is heated to the vapor stage. The carrier gas -- e.g. nitrogen -- is then added to the chromatograph to push the sample up the central column. As the substance being analyzed passes up the column, it's absorbed by the carrier and then separated into its distinct components. The components emerge from the column and pass through a detector, where they are identified and noted on a chart.

When the process is complete, every part of the mixture is identified. At this point, for instance, a forensic scientist will have the raw data needed to analyze evidence found at the crime scene. While television shows may portray the process as instant, it's often time-consuming.

Within the medical marijuana industry, scientists are using gas chromatography to test for pesticide residue in cannabis. While the medical marijuana industry is still young, and pesticide levels are not heavily regulated, industry leaders expect this to change as the marijuana industry grows. Thus, the use of gas chromatography to check for pesticides will grow too.

Whenever gases is used in the chromatography process, there's a potential for gas leaks, whether from the supply lines, storage tanks, or from the chromatograph itself. Nitrogen gas displaces oxygen. If nitrogen were to leak, air levels would become deficient of oxygen and employees could suffer health problems. 

Since nitrogen gas has no color or odor, there is no way for lab staff to tell that the gas has leaked. The best way to safeguard the lab is with an oxygen monitor. 

How an Oxygen Deficiency Monitor Protects Employees 

Risks of breathing oxygen deficient air include dizziness, fatigue, unconsciousness, and death via asphyxiation. All it takes is a couple breaths of air to experience adverse health effects. 
Since there is no way to tell whether a leak has occurred, it's necessary to use an oxygen sensor to track oxygen levels at all times. The oxygen monitor or sensor measures oxygen and only reacts when levels fall below a predefined threshold. Oxygen sensors from PureAire have alarms for oxygen levels of 18 percent and 19.5 percent, for instance. 

The oxygen deficiency monitor includes a flashing light and loud alarm, so that staff and passerby receive prompt notification of the leak. When the alarm goes off, employees can vacate the premises and contact emergency personnel. 

Given the serious risks posed by a nitrogen gas leak, it's important to use oxygen deficiency monitors anywhere inert gases are stored or used. 

PureAire is an industry leader when it comes to oxygen monitors. O2 monitors from PureAire are designed for long-lasting and maintenance-free use. They feature a zirconium sensor, which lasts for 10-plus years without calibration. PureAire's monitors can handle temperature changes, barometric shifts, and even freezing temperatures. Learn more about PureAire's monitors and how they promote safety at 

Tuesday, May 3, 2016

Chlorine Safety and Prevention: How to Protect Yourself from Chlorine Leaks

While chlorine gas is widely used in swimming pools, water treatment facilities, cleaning products, pharmaceutical products, and in many other industries, the gas is highly toxic when handled improperly. Training your workers on how to safely use chlorine is one part of health and safety best practices; monitoring your workplace for chlorine leaks is another. Learn about the hidden dangers in this common substance and how you can stay safe. 


The "Hidden Dangers" of Chlorine 

So many everyday things that you see and touch have come into contact with chlorine. The substance is a common cleaner and disinfectant because it is easy to use and inexpensive. Chlorine is also used in agricultural pesticides, in the manufacturing of drugs, in wastewater treatment facilities and the sanitizing of everyday drinking water, in paper manufacturing, in hospitality swimming pools and spas, and in many other products. No matter where it is being used, chlorine must be properly handled by all staff at all times. 

At room temperature, high chlorine levels are toxic. If chlorine gas comes into contact with substances including ammonia, ether, hydrogen, and turpentine, it can combust. Since this gas can cause breathing problems, it is dangerous to individuals with respiratory problems including asthma. 
The gas is yellowish at room temperature and has a distinct odor, so staff will be able to see and smell the substance. While this does aid in awareness of chlorine leaks, it is not sufficient to trust that your staff will see or smell leaked chlorine and leave. 

Employees exposed to chlorine can experience eye damage, coughing, choking, frostbite on the skin, and respiratory problems. In a worst case scenario, staff can die from suffocation due to sustained chlorine exposure. 

Fortunately, fixed gas monitors are an efficient way to protect staff from a chlorine leak. 

How PureAire Universal Gas Detectors Protect You From Chlorine Leaks

At PureAire, we offer universal gas monitors that protect against chlorine and other gases. PureAire's universal gas detectors are compact and designed for wall mounting in areas where you store or work with gases. Once installed, these detectors continually performs gas detection and monitoring. The maximum acceptable level of chlorine that workers can be exposed to, per OSHA regulations, is 1.0 parts per million (ppm). Chlorine is considered to be "Immediately Dangerous to Life and Health" when levels reach 10 ppm. As long as levels of chlorine remain below the acceptable safe level of 1.0 ppm, the detector is silent. Yet if gas leaks out and levels rise above the maximum acceptable level, the PureAire gas detector will sound an alert and flash a light so that staff will see or hear the alarm. 

Staff can then have enough time to stop what they are doing, exit the premises, and wait for emergency responders to contain the chlorine leak. When staff are alerted as soon as levels exceed those deemed safe, they can get out of the building before succumbing to chlorine-related health hazards. 

The universal gas monitor from PureAire protects against toxic gases including chlorine, hydrogen chlorine, ammonia, hydrogen fluoride, and other gases. Once installed, the PureAire detector will last for more than seven years without requiring any maintenance. If you seek a safe solution that delivers peace of mind and effective protection from chlorine leaks, PureAire's fixed gas monitor is a cost-effective, reliable option. 

Capable of chlorine gas detection in temperatures as low as -25 Fahrenheit up to to 22 Fahrenheit (-32 C to 50 C), these gas detectors offer flexible gas monitoring for visible and invisible toxins. PureAire's universal gas monitor is also water resistant and capable of detecting gases within a 30-foot range. 

Since PureAire's detectors have such a long lifespan, they are a convenient way to address gas leaks in the workplace. An optional long life renewable sensor extends the lifespan of these gas monitors by recharging the battery. 

After you install the gas monitor, your staff can work with chlorine and other gases with the certainty of knowing that their safety is protected. To protect your workers and your business assets, look to PureAire. View their fixed gas monitor or learn more at http://www.pureairemonitoring.com

Wednesday, April 20, 2016

PureAire Universal Gas Detector Offers Protection Against Toxic Levels of Ammonia



In March of 2016, an ammonia gas leak at a seafood processing plant in Boston left one worker dead. The fumes at the plant were so powerful that firefighters could not promptly enter the scene to mitigate the gas leak and try to save the staff member until much later. Reports show that 5,300 pounds of ammonia gas leaked out of the plant. If you work with ammonia at your facility, learn why this gas is so dangerous and one simple thing that you can do to prevent a tragedy like this from affecting your workers. 
The Hidden Dangers of Ammonia 
Ammonia is commonly used in refrigeration of dairy, meat, food processing, and cold storage. In fact, almost everything you can buy at your local grocery store has passed through an ammonia refrigeration site before making its way to your local store. 
A mixture of nitrogen and hydrogen, ammonia has been used in refrigeration since the 1800's. It is energy-efficient, inexpensive, more environmentally friendly than chlorofluorocarbon (Freon) refrigerant, and widely available via commercial manufacturing. While it may have started off as a refrigerant of food, ammonia is also used today for ice and water chilling in office buildings. In Europe, ammonia has additional applications in air conditioners in public buildings including hospitals and airports. The substance is also used in industries as diverse as semiconductor manufacturing, environmental emission monitoring, agricultural fertilizer, and chemical manufacturing.
As useful as ammonia is, it is also a dangerous substance when not properly stored. It can combust at high heat. While colorless, ammonia gas has a noxious odor. 
When workers are exposed to ammonia gas, they can experience skin and eye irritation. If concentrations of ammonia are high, burning and injury can result. In some cases permanent eye damage or blindness can occur. 
Workers will immediately know they are exposed to a harmful substance from symptoms including respiratory and nasal burning. Even though staff have a warning due to ammonia's odor, the substance causes adaptation. Workers may perceive a slight ammonia odor at low levels of exposure, and adjust to the scent so they can't tell when concentration has surpassed acceptable levels. 
In a worst case scenario, those exposed to ammonia will experience respiratory failure and die. The good news is, there are ways to protect staff from ammonia exposure using universal gas detection tools. 
How PureAire Universal Gas Detectors Protect Staff from Ammonia Exposure
PureAire's universal gas monitors protect against not only ammonia, but bromine, chlorine, hydrogen chloride, hydrogen fluoride, hydrides and other gases. Once installed, the monitor continually checks levels of gases and provides a visual and aural alert if levels of any substance exceed safe levels. 
This is a simple solution for round the clock gas monitoring for ammonia and many other hazardous gases. While ammonia has an odor, many other dangerous gases do not. Gas monitoring protects workers against substances they can smell as well as "silent killers" they cannot see or smell. With a universal gas monitor installed, workers can perform their duties secure in the knowledge that they will be alerted if ammonia or another substance leaks into the environment. 
After installation, the universal gas detector will work for over seven years with no maintenance. PureAire's gas monitor are built to outlast the competition to provide improved peace of mind for management and staff. 
If an ammonia leak were to happen, the gas monitor would sound an alarm so that workers can safely evacuate before succumbing to respiratory damage or failure. With staff outside the premises, everyone is thereby safe until first responders can deal with the leak. For example, in the Boston incident, the worker would have been able to escape the seafood plant with his life, resulting in an ammonia leak with no fatalities. 
Not only is gas detection the right thing to do for peace of mind, it can safeguard your business assets and personnel from dangers. To learn more about PureAire's line of universal gas detectors, please visit http://www.pureairemonitoring.com

Source

http://www.bostonherald.com/news/local_coverage/2016/03/worker_dies_in_ammonia_leak_at_plant_in_seaport

https://www.health.ny.gov/environmental/emergency/chemical_terrorism/ammonia_tech.htm

Tuesday, April 5, 2016

PureAire Universal Gas Monitor Receives UL Listing

PureAire is pleased to announce that its PureAire Universal Gas Monitor received the UL/CUL listing for models 99030 and 99031. PureAire’s Universal monitors comply with national and international safety standards, including UL 61010-1, CSA C22.2 NO. 61010-1-12-CAN/CSA, and IEC/EN 31010-1. 

Designed to protect against toxic gases including ammonia, bromine, chlorine, hydrogen chloride, hydrogen fluoride, hydrides and other gases, the universal gas monitor from PureAire offers continuous monitoring against unsafe gas levels. A universal gas monitor provides an easy and cost-effective solution for consistent monitoring for those organizations that need to work with these potentially toxic gases, yet wish to safeguard their workers. 

PureAire universal gas monitors are recommended for settings as diverse as cold food storage, chemical plants, semiconductors, manufacturing plants, pharmaceutical operations, and laboratory settings. PureAire's line of universal gas monitors allow facilities to work with these gases in a safe and responsible manner. The renewable sensor lasts for more than 7 years, longer than those of competitors. A built-in alarm sounds when gases surpass safe levels, allowing workers to take notice even when they cannot otherwise see, smell, or taste the gases. PureAire's universal gas monitors also have a 4-20 mA signal and 2 user-selectable relays, which can signal external horns, strobes, or fans. 

About PureAire

PureAire, which was founded in 1997, offers a line of oxygen monitoring devices and universal gas monitors for use in commercial, retail, educational, laboratory, and other settings. PureAire's line of universal gas monitors have sensors guaranteed to last for 7 years without maintenance, offering superior performance and reliability. The universal gas monitors run on a UL listed 24 VDC power supply. To learn more about PureAire or view their line of universal gas monitors, please visit www.Pureairemonitoring.com.

Thursday, March 24, 2016

Fertility Clinics and Egg Freezing: Nitrogen Use and How to Remain Safe

For women who want to have children when the time is right, egg freezing is a viable option and one that has become more popular in recent years. As an abundance of fertility clinics pop up nationwide, it is important to consider the safety implications of IVF, egg freezing, and fertility clinics. Dive into the world of fertility clinics to understand how eggs remain viable -- sometimes for years after harvesting -- and what risks the environment holds.

How Do Fertility Clinics Harvest and Store Eggs?

During the monthly menstrual cycle, women release a viable egg. In the fertility harvesting process, IVF clinicians administer hormones that increase egg production so they can harvest and store multiple eggs in a one-time procedure.
Doctors first administer hormone injections to inflate egg production prior to harvesting and storage. Three days after the final injection, the eggs are ready for harvesting. At this point, female patients then have eggs harvested from their ovaries using needles. Now the patient's role is simply to leave the eggs at the IVF facility until she wishes to be inseminated.
Traditionally, eggs were frozen for long-term storage, then thawed out when patients wanted to use the eggs. This method worked, but had a suboptimal success rate during IVF.

A new method, termed vitrification, increases the success rate of egg freezing for in vitro fertilization. Vitrification uses a flash freezing process to quickly freeze the eggs for long-term storage. After the eggs have frozen, they are then stored inside tanks of liquid nitrogen until they are needed. The new method reduces the formation of ice crystals, which can damage the egg during the thawing out.

The main risk that doctors counsel patients on is the chance that some or all of the eggs will perish in the process. Freezing of eggs is still a relatively new procedure. However, there is a greater risk involved. One that could affect female patients, their eggs, and fertility clinic staff: The risk of liquid nitrogen exposure.

Nitrogen Warnings in the Fertility Clinic Setting

Liquid nitrogen is perfectly safe as long as it remains in storage tanks. If even a single tank were to develop a leak, and the substance were to spill out into the fertility clinic, a lot more would be at stake than the viability of stored eggs for in vitro fertilization.

Nitrogen has the potential to deplete oxygen from an environment. At first, this may cause discomfort, dizziness, or confusion. As the leak continues and displaces more oxygen from the room, staff can asphyxiate. Since the gas cannot be seen or smelled, employees will not know something is wrong until it is too late and lives are lost.
For the safety of clinic staff, an oxygen deficiency monitor can be installed near the liquid nitrogen tank. This monitor takes periodic readings of the oxygen levels in the room. When everything is working properly and the oxygen is within the normal range, the monitor remains silent yet vigilant. In a worst case scenario where a nitrogen leak does develop, the O2 monitor will sound an alert once the oxygen in the room falls below acceptable levels. The alarm gives staff enough notice to escape the premises before being overcome by the lack of oxygen.
Like a carbon monoxide detector, an oxygen deficiency monitor does not really do anything until something goes wrong but can save lives in the event of an emergency. As with a carbon monoxide detector, it is important to select and install a quality O2 monitor.

The latest generation of oxygen monitors from PureAire come with a zirconium sensor, which requires no calibration or maintenance. Staff can install the O2 monitor in the IVF facility and remain assured that it will work for a period of 10 years with no maintenance of any kind.

For a reliable oxygen deficiency monitor, look to PureAire, a company with over 15 years of experience in the field. Learn more about PureAire's products at www.pureairemonitoring.com.


Monday, October 12, 2015

Paint Booths, or Areas Using Combustible Gases: Why a Requirement for Combustible Gas Monitor Might be Necessary

Paint booths save time and ensure a smooth and professional application of paint in a range of industries, including automotive, aerospace, home decor, furniture, and more. Combustible gases and fluids in the paint booth environment can pose a health hazard if something goes wrong. Explore the hidden dangers of paint booth fluids and gases, and learn how a combustible gas detector can increase employee safety in the work environment. 

Hidden Dangers in the Paint Booth Environment

The paint booth serves as a protected environment, minimizing many of the problems that would occur if the same item were to be painted out of doors. While paint booths are highly useful and cost effective for a range of applications, they do utilize harmful gases and fluids. Gases and fluids in a typical paint booth environment include compressed air, carbon dioxide, nitrogen, methane, natural gas, kerosene, helium, and custom gas mixes. These gases and fluids are usually piped into the spray booth from an external source; yet in some cases these gases can be piped into the spray booth from a source located inside the building. 
When everything is working properly, gases can flow as needed without posing a health risk. Yet if one of the supply lines, pipes, or storage tanks were to develop a leak, one or more of these substances could leak into the air. There are a range of hidden health dangers. Flammable gases, in contact with oxygen, could pose a fire risk. A lower explosive limit or LEL monitor can alert staff if gases have escaped so that staff may take appropriate measures. 

Nitrogen poses a severe health risk as it can create an oxygen deficient environment. When oxygen drops below a certain level, employees can experience respiratory distress. Since nitrogen is colorless and odorless, staff have no way of knowing of the danger they may be in, unless there is an oxygen monitor in place. 
The protected environment of the paint booth keeps contaminated air from passing through the area, so that the piece can properly dry and cure in between coats. This streamlines the spray paint process to ensure consistency and precision. 

When everything functions as it should, the paint booth ventilation controls keep vapors in the mist below 25 percent of exhaust. While routine inspections and internal alarms can ensure you that everything is working well, they are not a failsafe. To protect your staff from the dangers posed by combustible fluids and gases, install a combustible monitor and an O2 monitoring device as a second line of defense. 

How an LEL Combustible Monitor Can Protect Your Staff

The presence of combustible gases makes paint booths a dangerous environment prone to fires and explosions. To mitigate the risk, special pipes are used to carry materials into and out of the environment. Instrumentation and temperature controls utilize explosion-proof components, which ensure that the instrumentation and controls create no spark.

While this reduces the risk of explosion, it does not reduce the danger these gases pose were they to leak into the closed environment of the paint booth. An LEL monitor alerts your staff if gases exceed the lower explosive limit. This gives staff enough time to shut off control valves and exit the paint booth environment, safeguarding their health and reducing the risk of explosion. 
Not only are these monitors a good idea for employee health and safety, they may be required by law. According to OSHA, the Occupational Safety & Health Administration, a compliance safety and health officer can use a combustible gas monitor during inspections to ensure that the work environment does not pose a threat. 

PureAire offers a range of O2 monitoring systems for Nitrogen, Argon, CO2, and helium. Also, they offer LEL monitors that can be used to monitor the levels of hydrogen, natural gas , acetylene, and other combustible gases in the environment.  Built to withstand regular use without the need for maintenance, our combustible gas detectors come with a 4+ sensor and two alarm relays.

PureAire has over 15 years of experience developing the latest in LEL and oxygen monitors for a wide range of industrial uses. When you need a reliable and durable safety monitor, choose PureAire. Learn more about our combustible gas monitors for paint booths at our website or email us at info@pureaire.net.

Source                                     

http://www.dwyer-inst.com/articles/?Action=View&ArticleID=38
http://www.asminternational.org/content/TSS/pics/safety/safety5.pdf

http://www.pureairemonitoring.com/category/all-categories/gas-monitors/

Thursday, October 10, 2013

PureAire Releases Universal Toxic Gas Monitor

PureAire Monitoring Systems manufactures and distributes toxic gas monitors for safety, and as of August 2013, releases new toxic gas monitor called the Universal Toxic Gas Monitor. Their monitors make sure areas where toxic gases exist the area remains at a safe and breathable level, some gasses included are chlorine, bromine, HCL, HF, ammonia, toxics, and hydrides. These gases, commonly known as toxic gases, can be hazardous or even deadly if used without the proper safety precautions. Typical areas where these gases are used include laboratories, pharmaceutical manufacturing plants, cryopreservation facilities, semiconductors, and cold food storage. The addition this product line insures PureAire’s products are the premium choice for your safety. Since their beginnings in 1997, PureAire has sold many thousands of toxic gas monitors to customers including (Northwestern University, Exxon Mobil, and NASA) and laboratories (Intel, Los Alamos National Labs, USDA). A release of toxic gases in a confined space can cause irritation, permanent damage, and even hospitalization making it direly important that every space with human occupancy be monitored. Though these gases can be highly dangerous, their universal gas monitors allow groundbreaking research to be done with the ease of knowing any leak will be immediately detected. PureAire Monitoring Systems provide the #1 universal toxic gas monitor in the industry. With a renewable sensor lasting 7+ years, no competitor can offer the same longevity or reliability. The universal gas monitor has a built in audible alarm, 2 user-selectable relays for signals to external fans/horns/strobes, and a 4-20 mA signal. The introduction of the universal gas monitor provides a newer easier solution for the customer. Still used is the STX-PA Smart Gas Transmitter, though PureAire is predicting the universal gas monitor will take the STX-PA’s place. Manufactured in the USA, there is no question they are the unparalleled company to go to for your toxic gas monitor safety needs. The STX-PA has been sold since PureAire started in 1997 along with there 4-20mA version Aircheck Lite, also trying to be replaced by the universal toxic monitor. As with most technology, a newer updated version of a product is necessary. While the universal monitor has many of the same functions as the STX-PA this product offers more. Integrated is software enabling the customer to change the sensors by a simple plug and play. If the customer has testing which requires using HF for a few days but needs to switch to chlorine for another experiment, he/she can simply unplug the HF sensor and replace with chlorine in matter of seconds. The STX-PA would also have capabilities of switching sensors, though sending in the monitor PureAire had to take place in order to switch. In addition to many more features listed for the universal monitor, now there is a considerable louder 90 dB audible alarm. Lastly, pricing is much more competitive starting at $1,390 for a complete system compared to a starting price of $1,990. For more information on the PureAire Oxygen Monitoring System, contact PureAire Monitoring Systems, Inc., 557 Capital Drive, Lake Zurich, IL 60047; phone 888-788-8050 or 847-726-6000; fax 847-726-6051; or email info@pureaire.net. You may also visit the company’s website at www.Pureairemonitoring.com.