Showing posts with label oxygen monitors. Show all posts
Showing posts with label oxygen monitors. Show all posts

Tuesday, July 14, 2020

Pharmaceutical Companies Rely on Nitrogen



Pharmaceutical firms research, develop, and manufacture over-the-counter and prescription drugs and medicines. Usage of these drugs includes, but is not limited to, vaccinations, treatment for chronic conditions, and pain management.

To protect the health and well-being of the public, the pharmaceutical industry is one of the most highly regulated industries. For instance, in the United States, the Food and Drug Administration (FDA) carefully monitors pharmaceutical companies to ensure they are complying with the FDA’s Current Good Manufacturing Practice regulations. These regulations contain requirements for the methods, facilities, and controls used in manufacturing, processing, and packaging of a drug product.  The regulations are intended to ensure that a product is safe for use, and that it contains the ingredients and strengths it claims to have.

Pharmaceutical Manufacturers Rely on Nitrogen

Pharmaceutical manufacturers rely on nitrogen(N2) (an abundant, inert gas which makes up 78% of the air we breathe) for a wide range of uses, including everything from mixing raw materials, to cryogenic grinding (a process using liquid nitrogen to create ultra-fine, uniform particles), to purging oxygen from packaging.

A sterile environment is critical throughout the drug manufacturing and packaging processes. Nitrogen is used to remove oxygen (O2), moisture, and other possible contaminants,in order to create and maintain a sterile environment for production and packaging.

Nitrogen blanketing is the process by which pharmaceutical manufacturers create an inert, non-reactive, environment for safely mixing chemical compounds. Blanketing with nitrogen safeguards against corrosion and oxidation, and prevents possible volatile reactions that might occur if O2 were present, as  some medicinal compounds can be highly combustible when exposed to oxygen.

Oxygen and moisture are purged from packaging not only to maintain sterility but also to protect products during transport, and prolong the stability and shelf life of the packaged drugs.

Oxygen Monitors Can Reduce Risk in Pharmaceutical Manufacturing Facilities Utilizing Nitrogen

Nitrogen is an oxygen-depleting gas that is both odorless and colorless. As such, absent appropriate monitoring, workers would be unable to detect a nitrogen leak if one were to occur in a gas cylinder or line. When there is not enough oxygen in the air, persons working in the area can become disoriented, lose consciousness, or even suffocate due to the lack of oxygen.

Fortunately, by utilizing a top-quality oxygen monitor, also known as an oxygen deficiency monitor, pharmaceutical personnel can track oxygen levels and detect nitrogen leaks before an employee’s health is jeopardized.

PureAire Monitors

PureAire Monitoring Systems’ oxygen deficiency monitors continuously track levels of oxygen and will detect nitrogen leaks before the health of pharmaceutical personnel is put at risk. Built with zirconium oxide sensor cells to ensure longevity, PureAire’s O2 monitors can last, trouble-free, for over 10 years under normal operating conditions.  In the event of a nitrogen gas leak, and a decrease in oxygen to an unsafe level, the monitor will set off an alarm, complete with horns and flashing lights, alerting employees to evacuate the area.

Best practice calls for oxygen deficiency monitors to be installed anywhere there is a risk of gas leaks. The oxygen monitors should be placed wherever nitrogen is stored, and in all rooms and areas where nitrogen is used.

PureAire oxygen monitors measure oxygen 24/7, with no time-consuming maintenance or calibration required.

Each PureAire O2 monitor has an easy to read screen, which displays current oxygen levels, for at-a-glance readings by pharmaceutical manufacturing personnel, who derive peace of mind from the monitor’s presence and reliability.


Monday, March 16, 2020

Cannabis Extraction Safety



In 1996, California passed Proposition 215, making it the first of many states to ultimately legalize medical cannabis; as of January 2020, an additional 32 states and the District of Columbia have also made medical cannabis legal. Additionally, recreational use of cannabis is now legal in 11 states and is decriminalized in many others. Cannabis legalization and decriminalization have made cannabidiol (“CBD”, a non-psychoactive compound found in cannabis), and tetrahydrocannabinol(“THC”, the chemical responsible for most of cannabis' mind-altering effects), available to both recreational users and patients seeking treatment for such health issues as arthritis, anxiety, inflammation, seizure disorders, and nausea.

Since California’s groundbreaking move in 1996, medical and recreational cannabis has become a significant and rapidly growing industry. According to DC-based cannabis researcher, New Frontier Data, legal cannabis sales in the U.S. are expected to reach $30 billion annually by 2025. The industry growth has led to a substantial increase in grow rooms, medical dispensaries and other retail outlets, and extraction facilities.

Extraction
Extraction is a process by which desired chemical compounds are extracted and separated from the cannabis plant. Extraction strips the plant of essential oils, including CBD, THC, and terpenes (aromatic oils that give cannabis plants their distinctive scents). The extracted oils can be utilized in vape pens, edibles, capsules, tinctures, and topical solutions. Based on the end product, various techniques can be used for extracting the oils, including carbon dioxide (CO2) extraction and hydrocarbon solvent extraction (using solvents such as butane or propane).

Carbon Dioxide Extraction
Carbon dioxide, high pressure, and heat can be combined to create a “supercritical fluid” that extracts cannabis components from the plant. The CO2 extraction method generally produces high yields with relatively little waste. Temperatures and pressures can be adjusted to create multiple products including vaporizer oils; dabbing concentrates such as so-called waxes, crumble, shatters, and saps; and distillates (cannabis extracts that have been further purified and processed to separate and isolate the various cannabinoids, which include CBD and THC). Because CO2 evaporates on its own, many in the medical products and food and beverage industries find the CO2 extraction method appealing, since no residual carbon dioxide remains in the final manufactured product.

Hydrocarbon Solvents Extraction
Hydrocarbon extraction typically uses organic solvents such as butane and propane to separate essential oils from the plant material. The use of hydrocarbons for extraction is popular owing, in large part, to the relatively low overhead costs, efficiency (including the wide variety of products that can be created from a single extraction, without the need for further refinement), and high product quality associated with this technique. For instance, the low boiling point of butane, and even lower boiling point of propane, allow extractors to remove the desired compounds without risking evaporation of, or damage to, the delicate and heat-sensitive cannabinoids and terpenes. Moreover, their low boiling points makes it relatively easy to purge any residual butane or propane at the end of the extraction process, leaving behind only a relatively pure product.

Oxygen Monitors Can Protect Extractors and Their Employees
 While CO2 and hydrocarbon solvents are important techniques for extracting essential oils from cannabis plants use of these gases is not without risk, since extraction facility personnel and property are exposed to potential leaks from gas supply lines and storage containers.

Carbon dioxide is an oxygen-depleting gas that is both odorless and colorless. As such, absent appropriate monitoring to detect that a leak has occurred, extraction employees could become dizzy, lose consciousness, and even suffocate from breathing oxygen-deficient air. Hydrocarbons such as butane and propane also deplete oxygen and, they are flammable and explosive as well.

Proper gas detection equipment should be placed where the cannabis extraction process takes place, as well as in CO2 and hydrocarbon storage rooms, and in any other site where CO2, butane, and propane may be expected to accumulate. The gas detection equipment should include the capacity to activate visual and audible alarms, stopping the flow of gas and turning on the ventilation system.

PureAire Monitors
PureAire Monitoring Systems has safety monitors to meet the needs of cannabis extractors, whether they use CO2 or hydrocarbon solvents.

For facilities using carbon dioxide to extract their products, PureAire’s line of dual oxygen/carbon dioxide monitors offer thorough air monitoring, with no time-consuming maintenance or calibration required. The O2/CO2 monitor comes with user-adjustable alarm setpoints for both oxygen and carbon dioxide. The monitor is built with zirconium oxide sensor cells and non-dispersive infrared sensor (NDIR)cells, to ensure longevity.PureAire’s O2/CO2 monitors can last, trouble-free, for over 10 years under normal operating conditions.

Extractors utilizing hydrocarbon solvents, such as butane or propane, rely on PureAire’s LEL, explosion-proof, combustible gas monitors. The monitor is housed in a NEMA 4 enclosure specifically designed to prevent an explosion. The durable, long-life LEL catalytic sensor will last 5+ years without needing to be replaced.

PureAire monitors feature an easy to read screen, which displays current oxygen levels for at-a-glance observation by employees, who derive peace of mind from the monitor’s presence and reliable performance. In the event of a gas leak, or a drop in oxygen to an unsafe OSHA action level, PureAire’s monitors will set off alarms, complete with horns and flashing lights, alerting personnel to evacuate the area. At the same time, the monitors can be programmed to turn off the flow of gas (CO2, butane, or propane, as appropriate), and turn on the ventilation system.

In short, PureAire’s monitors enable cannabis extractors, in a cost-effective manner, to preserve both the quality of their products and the well-being of their employees.

Friday, May 17, 2019

3D Printed Auto Parts—The Future Is Now


Overview

3D printing (also known as “additive manufacturing”) affords manufacturers the ability to create custom parts that fit together perfectly.  Utilized for decades in the medical products and aerospace parts industries, 3D printing is increasingly being used in other industries as well, including the relatively recent advent of 3D printed metal auto parts.

 New and Replacement Auto Parts

Automakers have made use of 3D printing processes since the late 1980s, with the initial output comprised primarily of plastic parts.  Manufacturers such as Ford, BMW, Bugatti, Chrysler, Honda, Toyota, among others, have embraced 3D printing in their research and development efforts, including the production of working prototypes.  While the automobile industry is currently unable to mass produce an all 3D printed vehicle, carmakers are already producing 3D printed parts, with the eventual goal, as soon as is feasible, of more fully integrating 3D printed parts into the original manufacture of future generations of automobiles.

Availing themselves of 3D printing processes for producing auto parts allows manufacturers to generate parts that are lightweight (which can improve fuel efficiency) and customizable, and that can be created quickly, enhancing the lean manufacturing focus on just in time inventory.  Although plastic has traditionally been the material most often used in printing parts, as advances in additive manufacturing have been made, so too has the use of alternative materials.

For instance, in 2018, French luxury automaker Bugatti announced that it had developed a new 3D printed titanium brake caliper prototype which, it claimed, was the largest functional titanium component produced with a 3D printer.  DS Automobiles, Citroen premium brand, has created 3D titanium printed parts for the ignition elements, as well as 3D printed titanium door handles, to give their DS 3 Dark Side edition vehicle a sleek, high tech feel.

Gas Usage In 3D Printing Process

To prevent corrosion, and to keep out impurities that can negatively impact the final product, 3D printed parts must be produced in an environment made free of oxygen, typically by the use of argon (and sometimes nitrogen) within the building chamber. That creates a stable printing environment, prevents fire hazards by keeping combustible dust inert, and controls thermal stress in order to reduce deformities.

Oxygen Monitors Can Improve Safety in Additive Manufacturing Processes

Dust from materials used in additive manufacturing, such as titanium, is, when exposed to oxygen, highly combustible and, therefore, requires monitoring to prevent possible explosions.Argon and nitrogen, while used in 3D printing for their oxygen depleting properties, require monitoring to ensure both the integrity of the finished part, and the safety of manufacturing personnel.

PureAire Monitors 

For quality control purposes, PureAire Monitoring Systems’ Air Check O2 0-1000ppm monitor has a remote sensor that can be placed directly within the printing build chamber, to continuously monitor the efficiency and purity of the O2 depleting gases (e.g. argon and nitrogen) used therein.



Moreover, to ensure employee safety, PureAire’s Oxygen Deficiency Monitors should be placed anywhere argon and nitrogen supply lines and storage tanks are located. In the event of an argon or nitrogen leak, a drop in oxygen will cause the built-in horn to sound and the lights to flash, thereby alerting employees to evacuate the area.  PureAire’s Oxygen Deficiency Monitors measure oxygen 24/7, with no time-consuming maintenance required. PureAire’s monitors feature long-lasting zirconium sensors, which are designed to give accurate readings, without calibration, for up to 10 years.








Wednesday, February 6, 2019

What is a Room Oxygen Deficiency Monitor?



Many industries use compressed gas to create products. While compressed gases such as nitrogen are low-cost, easy to use, and flexible in a range of industries, these gases have a hidden downside: They displace oxygen from the air, which puts your workers at risk of suffocation if there's a leak. A room oxygen monitor checks levels of oxygen and provides in-time alerts if there's a gas leak. Learn what a room oxygen monitor does, how it works, and who needs one.

What Does an Oxygen Monitor Do? 

Inert gases, such as nitrogen, displace oxygen. Since these gases cannot be seen or smelled, facilities need a tool that's capable of detecting gas leaks. An oxygen monitor tracks levels of oxygen in a room and provides efficient notification if oxygen levels fall as the result of a gas leak.

Oxygen monitors may be called O2 monitors or oxygen deficiency monitors. While these names are all synonymous, there are a few other terms you might hear that do not refer to this kind of oxygen monitor.

In the medical and pharmaceutical industries, you may come across blood oxygen monitor, pulse oximetry, or oximeter products. These are totally different products than the oxygen deficiency monitor, and they will not protect against gas leaks. You'll find medical oximeters sold at pharmacies and online retailers, while oxygen deficiency monitors are sold online, through distributors, or directly from manufacturers like PureAire.

Which Industries Use an Oxygen Monitor? 

Oxygen monitors are used by businesses in the following industries:

Food and beverage 
OLED
Semiconductor
Automotive
Pharmaceutical
Medical gas
MRI
Cryotherapy and cryohealth
Cryopreservation
Egg freezing
Research and development
Businesses in these industries commonly use gases such as nitrogen in everyday operations. An oxygen deficiency monitor not only provides in-time notification of gas leaks but may be required by regulations. Failing to install an oxygen deficiency monitor could leave you out of compliance, which could lead to fines.

How Does an Oxygen Monitor Work? 

An oxygen monitor works by using a sensor to check levels of oxygen. A digital display interface shows readouts in PPM, PPB, or percentage, so your workers can tell at a glance that everything is functioning properly.

When levels of oxygen are at naturally occurring levels, the oxygen monitor stays silent. Employees can still check the readout for peace of mind. When something is wrong, an loud alarm goes off to provide your workers with instant notification of a safety threat. 

PureAire's line of oxygen monitors feature a unique zirconium sensor, which is designed to function for 10 years or more with no maintenance. Unlike other types of O2 monitors on the market, our oxygen monitor does not need regular maintenance or calibration. Your facility will save time and money when you choose PureAire products. 

PureAire's O2 monitor perform in a range of environments, including confined spaces, basements, and freezers. Capable of accurate readouts in temperatures as low as -40 C, our oxygen monitors never drift from barometric pressure shifts or thunderstorms. 

Do you have questions about oxygen deficiency monitors? We're here to answer your questions. Chat with us online or call today: 888.788.8050.

How Many Oxygen Monitors Should Be Installed? Where Should I mount one?


While OSHA regulations require the use of an oxygen monitor anywhere that compressed gases or cryogenic liquids are used or stored indoors, the regulation does not provide sufficient detail for facilities on how to set up am oxygen monitor. Businesses want to comply with the regulations, but are left wondering what compliance looks like. At PureAire, we're often asked by our customers, "how many oxygen sensors should installed?" so we thought we'd provide clarification on where and how to mount oxygen monitors.

Where an Oxygen Deficiency Monitor Should be Used

OSHA regulations require that oxygen deficiency monitors be placed in any room where compressed gases are used or stored. Storage areas are frequently outside or in confined spaces, such as basements or storage closets.

When gas tanks are installed outside and the gas enters the facility by pipes, we recommend oxygen deficiency monitors be installed near the main gas connections, which is where the gas enters the facility. This might be near a machine, a food and beverage packaging dispensing machine, a 3D printer, or other tool.


With respect to a confined space where dewars of gas are kept, the oxygen deficiency monitor should be installed directly in the storage area. PureAire's oxygen monitors are designed to function optimally in confined spaces, including cryogenic freezers, and are impervious to shifts in barometric pressure. As such, they take accurate readouts of oxygen levels in confined spaces, freezers, facilities, and other places.

The oxygen monitors measure  5.12 inches wide by 4.5 inches high by 3.25 inches deep, and their small size means that they're quite easy to place about the facility, even if you need to place the O2 monitor in a tight confined space, such as a cryogenic freezer.

Best Place to Mount an Oxygen Deficiency Monitor 

Best practice is to mount the oxygen deficiency monitor 3 to 5 feet off the ground, as well as 3 to 5 feet away from a gas cylinder.

There are situations when the oxygen monitor should be placed further away. One common example is MRI rooms, where metal is prohibited due to the strength of the MRI magnet. In these circumstances, the oxygen deficiency monitor can be mounted outside of the room, and a plastic sample draw tube used to check oxygen levels inside the MRI room.

What is the Proper Spacing of Oxygen Monitors? 

This last question may be the trickiest question to answer. Nitrogen and other inert gases have no odor or color, so they cannot be seen. The difficulty here is that it's all but impossible to say where the gas will go if there is a leak.  

We recommend that you place one oxygen deficiency monitor every 400 to 600 square feet to be safe. This works out to every 20 to 30 feet in a large space. When you use this ratio to determine the right number and spacing of oxygen monitors for your facility, you'll be adequately covered just in case anything happens. Given the deadly consequences of a nitrogen leak, it's better to be safe than sorry.  

PureAire creates oxygen deficiency monitors that are capable of withstanding some of the toughest conditions. Oxygen deficiency monitors from PureAire are designed to operate in temperatures as low as -40 C up to 55 C.     

Oxygen deficiency monitors can last for 10 or more years with no calibration. The hardy zirconium sensor needs no calibration after installation, which means that setup couldn't be easier.  

PureAire's monitors are accurate to +/- 1 percent and come with two alarm levels, 18 percent and 19.5 percent. The integrated alarms provide sufficient notification for workers to evacuate the area. The LCD display is backlit so it's easy to read. 

All PureAire O2 monitors come with a 3 year warranty. Wall mounting brackets and an optional plug-in wall power supply are included, so you can mount the unit upon receipt and protect your facility from dangerous gas leaks.

To learn more about PureAire's oxygen deficiency monitors, visit www.pureairemonitoring.com.

Thursday, December 27, 2018

How to Monitor Oxygen Levels in a Room?




If you're wondering how to monitor oxygen levels in a room, look no further than an oxygen monitor. Learn how to use an oxygen monitor, where you install an oxygen monitor, and why this one little device could save a life. 

Why Should I Measure Oxygen Levels in a Room? 

Before we can answer the question of how to measure oxygen levels in a room, we must look at why you're measuring oxygen levels in a room. 

Humans need oxygen to breathe. The air's natural oxygen concentration is around 21 percent; however, natural oxygen in the air can be displaced by certain gases, including nitrogen and argon. If nitrogen were to leak in a closed space, oxygen levels would fall. Since nitrogen and other inert gases have no color or odor, it's not as if you can spot a nitrogen leak occurring. 


When oxygen levels fall below the safe threshold, which is 19.5 percent, health hazards may occur. With only a few breaths of oxygen deficient air, you could fall unconscious and suffocate. Given these safety risks, leak detection systems are necessary. 

What is an Oxygen Monitor? 

An oxygen monitor is a device that measures oxygen levels in the room, to ensure the air has enough oxygen for respiration. Also called an oxygen deficiency monitor or an O2 monitor, an oxygen monitor uses a sensor to measure oxygen levels. By tracking oxygen levels, gas leaks can be detected even though the leaking substance cannot be seen or smelled. 

Oxygen monitors come with a range of features, including built-in alarms that go off when leaks occur. There is usually a loud alarm (designed to be heard over machine noise) as well as a flashing light. 

Oxygen levels differ in their setup and maintenance needs, which makes the question of how to use an oxygen monitor a little more challenging to answer. Some brands of oxygen monitor require annual maintenance and calibration. Other styles of oxygen monitor, such as those sold at PureAire, do not need calibration after installation. PureAire's O2 monitors are designed to work efficiently and accurately for 10 or more year after installation, saving time and money. 

Where You Install an Oxygen Monitor? 

Oxygen monitors should be installed anywhere there is a risk of gas leaks. Place one oxygen monitor in any room where you store inert gases and in any room where these gases are used. This way, if you have a helium, argon, or nitrogen spill -- for instance, in a university science lab -- the oxygen sensor will detect the lower levels of oxygen and sound the alarm. 

How do You Install an Oxygen Monitor?

Oxygen monitors can be mounted on the wall using a bracket and screw, then connected via plug-in-the-wall power supply. Alternately, oxygen monitors can be hardwired with the services of an electrician. It's your choice. We recommend that oxygen monitors be installed 3 to 5 feet off the ground, and 3 to 5 feet away from any obstacle, such as a gas tank. 
Oxygen monitors deliver peace of mind that your employees and your facility are protected from the hazardous side effects of a gas leak. They may be required by industry regulations. To get an industry-leading oxygen monitor that's maintenance-free, look to PureAire.


Wednesday, August 1, 2018

Crispr and the Editing of Genes: To Help Revolutionize Biomedical Science



Scientists from MIT and Harvard University are placing their faith in a gene editing tool that may revolutionize the treatment of deadly diseases. CRISPR, which stands for Clustered Regularly Interspaced Short Palindromic Repeats, has the potential to unlock the next generation of treatments for conditions like cancer, ALS, or Alzheimer's. Learn how CRISPR is poised to change genome editing and biomedicine over the next few decades.

How Does CRISPR Work? 

Bacteria within the body have their own innate intelligence -- the fascination with the microbiome being one example of this scientific principle.

Scientists observed that bacteria was able to fight infections by retaining a slice of DNA from invading viruses, so they could recognize if the virus returned and mount a faster defense. If the intruder returns, the body's natural CRISPR goes after it. Scientists were able to create their own CRISPR, which they can use to edit genes.

You may remember all genes contain chemical basis, referred to by the letters C, G, A, or T. A genetic typo creates markers for disease. Scientists can search for specific bad combinations using CRISPR -- for instance, the gene that would cause ALS -- and then slice out the faulty gene and replace it with something innocuous. By doing this before someone gets sick, the theory goes, CRISPR can save lives. 

Already, scientists are using CRISPR to breed mosquitos that cannot transmit malaria, an application that would save thousands of lives. Others are working to create a stronger rice plant that can withstand floods and drought caused by climate change.

There are a few examples that illustrate the power of CRISPR.

Scientists are still figuring out the true potential of this genome editing tool, however, there is great promise and great enthusiasm for CRISPR's potential from scientists across the globe. In the meantime, laboratory workers must preserve genes and tissue samples for vitality using a nitrogen freezer.

Keeping Tissue Safe in the Laboratory Setting

Nitrogen freezers maintain ultralow temperatures of -150 to -200 Celsius. When genetic material is frozen at such a low temperature, it goes to sleep. The material can be thawed and reanimated for use in the lab setting. Along with low temperatures, the key to maintaining the vitality of the tissue is a slow freeze and thaw. If cells were to freeze too quickly, their cell membranes would burst. The same holds true for thawing frozen tissue. Thus, nitrogen freezers are a mainstay of the lab setting because they provide a reliable, efficient way to keep genomic materials chilled until use.

Any time nitrogen is used, there is a risk of accident if the nitrogen leaks or spills. Nitrogen does not have a color, scent, or odor, which means lab workers wouldn't notice a leak -- although they might notice if, say, the freezer door did not fully close.

Like other inert gases, nitrogen displaces oxygen. If the nitrogen freezer were to leak, the laboratory could lose so much oxygen that workers would experience respiratory distress. To safeguard against a leak, laboratories must use an oxygen deficiency monitor.

An oxygen deficiency monitor tracks the level of oxygen in the lab through constant monitoring. Since nitrogen displaces oxygen, this monitor can detect a gas leak by noting falling levels of oxygen. A digital display indicates the current amount of oxygen in the room, providing assurance for lab staff that everything is working as it should. If oxygen falls to the critical threshold as defined by OSHA, an alarm goes off. Lab workers can exit the premises and wait for emergency personnel to respond.

PureAire creates robust oxygen monitors trusted within the scientific and biomedical communities. PureAire's oxygen deficiency monitors work in freezing temperatures and confined spaces, remain accurate despite barometric pressure shifts, and last 10 or more years without calibration. 

To learn more about PureAire's products, visit www.pureairemonitoring.com

sited sources:

https://www.cbsnews.com/news/crispr-the-gene-editing-tool-revolutionizing-biomedical-research/
https://www.thermofisher.com/us/en/home/references/gibco-cell-culture-basics/cell-culture-protocols/freezing-cells.html

Thursday, November 17, 2016

Tunnel Freezing and Flash Freezing Food with Nitrogen: Oxygen Monitors and Why They May Required



New developments in cryogenic freezing are transforming the frozen food industry by making it easier to freeze all sorts of items quickly while retaining the highest nutritional value. Cryogenic and tunnel freezers are easy to use, yet they pose a hidden health risk. Learn why you may need an O2 monitor if your frozen food manufacturing facility relies on cryogenic freezers.
                                                              
How Cryogenic Freezers Work

Cryogenic freezers allow for continuous freezing of food, increasing output without requiring a large amount of space. Compared to mechanical freezers, which take longer to freeze products, they increase both the production and the quality with a low investment of capital.

In particular, cryogenic freezers are useful for freezing par-baked goods, which are partially baked before being frozen for storage. Par-baked items allow fast-food restaurants, supermarkets, sandwich shops, cafes, and other institutions to offer fresh, healthy baked goods without needing to bake from-scratch every day. For a commercial baking facility, investing in a cryogenic freezer is the best way to increase their output, grow their business, and become more profitable.

Cryogenic freezers work by using liquid nitrogen to quickly chill items to safe temperatures for frozen storage. As in any environment where liquid nitrogen is present, there is a danger of oxygen depletion and asphyxiation. Thus, it is always a good idea to have an O2 deficiency monitor present onsite to protect the health of employees.

One subset of cryogenic freezers, the tunnel freezer, uses a continuous freezing model of a conveyor belt, an injection system, and an exhaust system to vent gases. When the texture of the finished product is paramount, as in baked goods or seafoods, or when it's necessary to flash freeze hot foods quickly, a tunnel freezer is the best way to maintain quality in the end product.

Why an Oxygen Detector is Necessary with Cryogenic Freezers

As mentioned above, cryogenic tunnel freezers rely on an inert gas, nitrogen, to flash freeze food items. Nitrogen is perfectly safe when used in the closed-loop freezer system and properly vented from the facility. However, if the exhaust system were to develop a leak, nitrogen gas could enter the manufacturing facility and start to displace oxygen from the air. Since nitrogen is colorless and odorless, staff would not notice the leak. In a matter of minutes, ambient levels of oxygen could drop so severely that staff could become disoriented, lose consciousness, or die.

Simply by installing O2 monitors wherever nitrogen gas is used or stored, you can monitor levels of oxygen in the air and ensure there is no risk of oxygen displacement from a nitrogen leak. In the event that nitrogen leaks into the environment, the O2 deficiency monitor will sound an alarm and flash lights to let staff know that oxygen levels have fallen below the acceptable threshold set by OSHA. Staff can then evacuate before their health is compromised.

There are many styles of O2 monitors, but the one we recommend for flash freezing environments is the Sample Draw oxygen monitor. The style of O2 monitor can be placed outside the freezer and monitor levels of oxygen inside the freezer using a polyurethane tube. This ensures the sterility of the flash freezing environment while safeguarding workers. With a state-of-the-art zirconium oxide sensor, this style of oxygen detector can last without any maintenance for up to 10 years.


PureAire has over 15 years of experience, and is an industry leader in oxygen detector technology. To learn more about the Sample Draw oxygen monitor, please visit www.PureAireMonitoring.com.

Thursday, September 10, 2015

Oxygen Monitor for Foup's in Semiconductors and Cleanrooms


Over time, the contamination control requirements in the semiconductor industry have become more stringent. Employees now must spend more time adhering to cleaning protocols to preserve the sanitary nature of the environment and comply with regulations. The front-end unified pod (or FOUP) began appearing in semiconductors in the 1990s, serving as a transportation box to safely and securely hold silicon wafers and ensure easier compliance with the industry's  contamination control requirements.

FOUPs allow the wafers to remain in a sterile environment, while also remaining isolated from the cleanroom itself. Not only does this save time, this saves money by lowering the maintenance needs and investments needed to maintain a clean room. Widespread today, FOUPs must be properly cleaned and maintained in order to remain functional. Since a single FOUP can cost $1,000’s so this is not something to be taken lightly by staff. 

Why Cleanliness is Critical to the Semiconductor Industry

Maintaining a cleanroom is so important because air particles can get on equipment or tools and compromise them. During manufacturing processes such as etching, the wafers held inside FOUPs are removed from the isolated environment of the FOUP and then subject to different chemicals. After the etching process ends, trace amounts of these chemicals remain on the wafers. If these were to be returned to the FOUP, they would contaminate the closed atmosphere with chemical residue. This could wreak havoc on the remaining wafers stored in the clean environment of the FOUP. Were this to happen, FOUPs and the wafers inside would need to be cleaned - a very expensive and time consuming process. 

The average FOUP can last for roughly five years before it needs to be replaced. To extend its lifespan and keep all components clean and sanitary, it is necessary to clean FOUPs periodically and to maintain good laboratory habits to minimize mishandling of FOUPs.

Compressed dry air or an inert gas such as nitrogen are common choices for effective cleaning of FOUPs. Studies have shown that passing nitrogen gas over the lower ports and front-end environment of the FOUPs is a reliable way to clean the interior by removing debris and chemical residue stuck inside. While this is useful for reliable FOUP cleaning, introducing nitrogen into the laboratory environment can pose a safety hazard.

Safety Risks of FOUP Cleaning With Nitrogen

Nitrogen gas can displace oxygen if it is released in a closed environment. Were nitrogen to leak from the FOUP and into the clean room, it could reduce levels of oxygen in the air below safe breathing levels. In a worst-case scenario, staff could become sick or die from lack of oxygen. Since both oxygen and nitrogen are colorless and odorless gases, staff cannot tell how much oxygen is in the air, or whether nitrogen used to clean FOUPs has escaped through a leak.
An oxygen monitor can evaluate the levels of oxygen in the air to ensure that nitrogen used to clean FOUPs does not make its way into the clean room, to compromise the air quality and safety there. A wall-mounted O2 monitor takes periodic readings of the level of oxygen in the room. As long as oxygen levels remain in an acceptable range, the sensor will continue to operate as usual. 

If oxygen levels were to drop such that employee health and safety might be compromised, the oxygen deficiency monitor would set off an alarm that would tell staff to evacuate. Staff then have enough time to exit the clean room and avoid health problems associated with oxygen deficient environments. 

When looking for an oxygen monitor for FOUPs, it is vital that the O2 monitor be as hardy and long-lasting as the FOUPs themselves. At PureAire, we make oxygen sensors guaranteed to last for 10 years. Our O2 monitors do not need calibration or maintenance to perform, unlike other brands of oxygen monitors. To ensure a clean, safe environment, while protecting your investment, choose the best in oxygen deficiency monitoring. Learn more about our products at our website, www.pureairemonitoring.com.

Source

http://www.sdram-technology.info/FOUP.html
http://www.entegris.com/Resources/assets/1013-0667.pdf

http://micromagazine.fabtech.org/archive/04/08/keyhani.html

Monday, July 21, 2014

Long Lasting Safety with PureAire Monitoring Systems’ 10+ year sensors

When it comes to oxygen deficiency monitors, PureAire makes the longest lasting units on the market. They believe your safety should not be taken lightly, and have created a reliable and affordable monitor that will outlast all of their competitors. PureAire Monitoring Systems has broken away from the norm of using disposable sensor cells, and has introduced the groundbreaking technology of a 10+ year maintenance free sensor.

Disposable sensor cells have been an international standard in oxygen monitors for decades, but they are far from ideal. They require frequent maintenance and monthly to quarterly calibration, which can be costly. Without calibration, false alarms will occur, or worse, a failure to alarm in the event of oxygen deficiency. The reliability of these disposable sensors can even be affected by changes in barometric pressure.

PureAire Monitoring Systems has come up with a unique product to solve these problems. Their oxygen deficiency monitors include a Zirconium Oxide sensor, which lasts for 10+ years. This sensor is not affected by barometric pressure, and never needs to be recalibrated. This means that it will continue working without flaw toward keeping you safe over many years.


With over 4,000 units in the field, PureAire’s oxygen deficiency monitors continue to gain popularity and support amongst its users. No maintenance means no hassle, and more time to focus on your work while continuing to stay safe.

For more information on the PureAire Oxygen Monitor, contact PureAire Monitoring Systems, Inc., 557 Capital Drive, Lake Zurich, Illinois 60047; phone 888-788-8050, fax 847-726-6051, or contact us via contact form. You may also visit the company’s website at www.PureAireMonitoring.com, and www.MonitorOxygen.com.

About PureAire Monitoring Systems:

PureAire offers an unbeatable combination of innovation and experience in solving safety and environmental needs of their customers. As a manufacturer, they are capable of handling any size project, which includes working with OEMs and distributors.

PureAire’s proprietary sensor cell technology and leading edge electronics are designed to interface with the latest distributive control systems.

Beginning in 1996, their growth has been a result of their total commitment to supporting their customers. PureAire’s goal is to provide the best service and support in the industry. Safety is their number one priority.

Wednesday, May 14, 2014

Oxygen Monitors to be Required in Denver County Regarding Use of Nitrogen, Helium, and Argon

There is no question that working with inert gasses can be a useful but dangerous practice. Ideally, there should be an oxygen deficiency monitor in your facility to make sure the air is safe to breathe in case of a gas leak. If your facility is in Denver County, and you don’t yet have an oxygen monitor, be prepared to purchase one. The Denver Fire Department is currently writing a law that makes O2 monitors mandatory in areas containing inert gasses (Nitrogen, Argon, and Helium).

Inert gasses are also referred to as asphyxiating gasses. This means that as they leak, they deplete the oxygen in the surrounding area, causing people nearby to suffocate. An oxygen deficiency monitor tests the air around the tank, or where the gas is being used, to assure that oxygen is maintained at a breathable level. If the oxygen level drops, an alarm sounds, allowing people to evacuate before they asphyxiate. This danger is why the Denver Fire Department is requiring oxygen monitors around the use of inert gasses. As of April 2014, a draft of the law is awaiting approval and will be implemented in the near future.

Currently in New York City, a law requiring oxygen monitors in the presence of inert or cryogenic gasses is already in place. The Denver law is being modeled after this, requiring a monitor for gas amounts that reach or exceed 100 lbs or 60 gallons. This quantity of gas will also require a permit from the fire department.

In order to comply with this new law, facilities using inert gas will have to seek out an oxygen monitor on their own. PureAire Monitoring Systems makes and sells the best O2 monitor on the market. While other companies’ monitors require yearly maintenance, PureAire’s monitor has a censor that lasts for 10+ years. This means that you can install and go about your business and not need to worry about recalibrating. PureAire has been dedicated to your safety since 1997, and is committed to helping you through this transition.

For more information on the PureAire Oxygen Monitoring System, contact PureAire Monitoring Systems, Inc., 557 Capital Drive, Lake Zurich, IL 60047; phone 888-788-8050 or 847-726-6000; fax 847-726-6051; or email info@pureaire.net. You may also visit the company’s website at www.Pureairemonitoring.com.

Wednesday, January 8, 2014

Helium and MRI Rooms Around the World



Helium gas is something most people feel fairly familiar with. Children are enthralled with the magical beauty of a floating balloon, watching it reach toward the sky and hoping not to lose their grip on the string. Helium feels safe, and while people surround themselves with flying wonders filled with this lightweight gas, the real magic of helium is taking place in MRI rooms across the globe. With this magic, though, comes some danger.

Magnetic Resonance Imaging (MRI) uses strong magnetic fields to surround the part of the body needing to be studied. The resulting images are important for diagnosis and further understanding of a problem, but it is equally important that the procedure be safe and controlled. In the process of using the MRI machine, the magnet becomes superheated, and this heat needs to be kept in check. Liquid helium, at a temperature of -450° F, surrounds the magnet and keeps it cool enough to remedy the danger of overheating, in turn posing its own risk.

A Helium leak would displace the oxygen in a room, suffocating anyone inside. Because it is colorless and odorless, an oxygen deficiency monitor is required for detection. A person closed inside the room would not notice the leak on their own, and it would be too late. In the event of a helium leak, an O2 monitor would sound at the first detection of oxygen displacement, warning anyone inside the room of the danger and allowing them to evacuate in plenty of time.

Since the 1980’s, the number of MRI machines in use has risen from 12 to over 25,000. This in turn makes MRI machines the #1 users of liquid helium in the world. The relationship between the hot magnets and the cold helium is what makes the work of this important machine possible. With the use of an oxygen deficiency monitor, doctors and patients at least have one less thing to worry about. They can focus on the physical ailment at hand, and feel safe in knowing that in the event of a helium leak, they will be warned well before the point of suffocation.

Oxygen Deficiency monitors are recommended in all MRI facilities, and are REQUIRED in all New York City MRI rooms. PureAire Monitoring System’s oxygen monitors are a trusted product amongst MRI designers and users, thanks to their 10 + year oxygen sensor. Unlike the competitors, PureAire’s sensors do not require maintenance or replacement parts and are not impacted by environmental drift. This means no false alarms or failures due to depleted sensors. Without having a yearly service call on the monitor, the cost is very efficient. This translates to prolonged safety without maintenance, and the safest and most reliable possible monitor for this application.

“Thanks again for your support. The oxygen monitors are in their respective locations and are functioning as designed. Nice unit! Everyone thinks they are a great product. The software menu is easy to use and could not be easier to operate.” - Dominion Nuclear

“The O2 monitors are working well and doing a great job! Alarm relays are configured with the exhaust fan and is triggered a couple of times a day if we have cryogenic bottles in the area. Excellent product, repeatable, and reliable as advertised.” - Gulfstream Aerospace
For more information, please visit our web site at: www.PureAireMonitoring.com, or www.MonitorOxygen.com.

If you have any questions, we’d love to speak with you. Call us at: 1-888-788-8050

About PureAire Monitoring Systems, Inc.
PureAire is the industry leader in gas monitoring solutions enabling organizations to ensure safe work environments, minimize compliance risk, and reduce associated costs. Over 1,000 organizations across the globe use PureAire gas monitoring solutions. Beginning in 1996, PureAire’s growth has been a result of an unbeatable combination of innovation and experience in solving safety and environmental needs for customers, as well as a total commitment to supporting the customer 24 hours a day, 7 days a week

1) Air Products. (1997). MATERIAL SAFETY DATA SHEET. http://avogadro.chem.iastate.edu/MSDS/helium.pdf

Thursday, October 10, 2013

Liquid Nitrogen in Human Oocyte Cryopreservation

The word cryopreservation sounds like something from a science fiction movie. Maybe a man from the past was frozen in time, only to reawaken decades later, unharmed and unaware that he had been frozen at all. Though this scenario seems far-fetched, on a smaller scale, cryopreservation is a commonplace practice in the 21st century. While a grown man cannot be frozen and awoken, the building blocks of man are fair game. Human oocyte cryopreservation, or egg freezing, is a way to freeze and preserve a woman’s eggs. At a later time, these eggs can be thawed and fertilized and used to impregnate the woman. There are many reasons a woman may be a candidate for this procedure. Some of these reasons are age, early menopause, and pre chemotherapy or radiation therapy, which may damage eggs left in the body. In any case, if a woman learns that she will be unable to produce healthy, viable eggs in her future, oocyte cryopreservation is a good option to ensure she has healthy eggs if she decides to try conceiving at a future time. Semen and embryos can also be treated and cryopreserved in a similar way. These specimens can remain frozen for a long period of time. Embryos can be stored for up to 16 years, and semen as long as 22 years. This allows someone who is going through an illness or separation from a spouse to wait until a more viable time for implantation for conception. Most people can easily understand the concept of freezing something to save for later, but the frozen eggs are not stored in your average icebox. Instead, liquid nitrogen freezes the eggs at −321 Fareignheight. This temperature is considered a deep freeze. With the addition of a cryoprotectant to deter ice crystals from forming, the specimens remain in the deep freeze until they are thawed for later use. Amazingly, over 500,000 live human births have been a result of such technologies. There are over 400 facilities nationwide that can provide the oocyte cryopreservation procedure to women in need. On the patients end, the facilities seem like ordinary doctors offices, but the real magic takes place behind closed doors. The scientists and lab technicians use liquid nitrogen to conduct the deep-freezing, which can be very toxic if not used correctly. They rely on oxygen deficiency monitors to detect any lower than average levels of oxygen in the vicinity, which may indicate a nitrogen leak. For the whole sequence to go off without a hitch, the scientists need to remain confident in their safety throughout the process. Pureaire Oxygen Monitoring Systems has created the perfect product to ensure such safety. Their O2 monitor is the best in the industry. The zirconium oxide sensor in the monitor lasts 10+ years with no maintenance or recalibration, making the product last longer than any other. This makes the monitor very cost effective, as it does not require additional purchases on a yearly basis. Also, the monitor’s ability to link to an alarm system, horn and strobe, and exhaust fan help warn people across a facility to evacuate an unsafe area. There is no question that today’s scientific technologies are impressive, yet ever evolving. As a company, Pureaire Oxygen Monitoring Systems vows to support these growing technologies by keeping researchers safe and giving them the confidence to do their job creating families of the future. For more information on the PureAire Oxygen Monitoring System, contact PureAire Monitoring Systems, Inc., 557 Capital Drive, Lake Zurich, IL 60047; phone 888-788-8050 or 847-726-6000; fax 847-726-6051; or email info@pureaire.net. You may also visit the company’s website at www.Pureairemonitoring.com.

Wednesday, January 9, 2013

PureAire Oxygen (O2) Monitor Used in MRI Rooms Around The World

In the early 1980’s, there were 12 Magnetic Resonance Imaging (MRI) machines in use. Today, there are approximately 25,000 around the globe. One item in common is their use of Helium. Liquid Helium is most often associated with party balloons and funny voices, but 20% of the world supply of this super-cooled gas is used in MRI equipment. Liquid helium is extremely cold (-450° F), which is necessary to cool the magnets and get optimum performance from the $3M piece of equipment. One problem with using the gas is that it displaces oxygen, and without oxygen, people and animals suffocate. Look no further than the relatively recent death of a young party-goer who inhaled the gas to make her voice squeaky. Her oxygen levels dropped to a deadly rate. Helium is a nontoxic, odorless, colorless, nonflammable gas stored in cylinders at high pressure. It can cause rapid suffocation when concentrations are sufficient to reduce oxygen levels below 19.5%. It is lighter than air and may collect in high points or along ceilings. Self-Contained Breathing Apparatus (SCBA) may be required by rescue workers.1 If a helium leak occurred in a MRI room, asphyxiation can occur, creating a dangerous environment for both facility workers and patients. For that reason, Oxygen Deficiency monitors are recommended in MRI facilities. PureAire Monitoring Systems Oxygen Monitors are becoming the newest safety product amongst MRI users, thanks to its 10 + year sensor. Unlike its competitors, PureAire’s sensors do not require maintenance or replacement parts and are not impacted by environmental drift. This means no false alarms or failures due to depleted sensors. Further, the “set it and forget it” nature of the solution translates to the lowest cost of ownership in the industry. The PureAire Oxygen Monitor has been used around the world for the last 14 years. The high reliability, low cost and PureAire’s commitment to customer satisfaction make it a customer favorite. “Thanks again for your support. The oxygen monitors are in their respective locations and are functioning as designed. Nice unit! Everyone thinks they are a great product. The software menu is easy to use and could not be easier to operate.” - Dominion Nuclear “The O2 monitors are working well and doing a great job! Alarm relays are configured with the exhaust fan and is triggered a couple of times a day if we have cryogenic bottles in the area. Excellent product, repeatable, and reliable as advertised.” - Gulfstream Aerospace For more information, please visit our web site at: www.PureAireMonitoring.com, or www.MonitorOxygen.com. If you have any questions, we’d love to speak with you. Call us at: 1-888-788-8050 About PureAire Monitoring Systems, Inc. PureAire is the industry leader in gas monitoring solutions enabling organizations to ensure safe work environments, minimize compliance risk, and reduce associated costs. Over 1,000 organizations across the globe use PureAire gas monitoring solutions. Beginning in 1996, PureAire’s growth has been a result of an unbeatable combination of innovation and experience in solving safety and environmental needs for customers, as well as a total commitment to supporting the customer 24 hours a day, 7 days a week 1) Air Products. (1997). MATERIAL SAFETY DATA SHEET. http://avogadro.chem.iastate.edu/MSDS/helium.pdf

Thursday, October 4, 2012

Hypoxico Selects PureAire Oxygen Deficiency Monitors…Again

Lake Zurich, IL and New York, NY, October 1, 2012 - Hypoxico (www.hypoxico.com), the world leader in altitude simulation, has once again selected PureAire Monitoring Systems’ (www.pureairemonitoring.com) Oxygen Deficiency Monitor to meet its customer’s needs for safety and accuracy. Since 2006 PureAire Monitoring Systems O2 Monitors have been used in Hypoxic High Altitude Training rooms. The use of high altitude training rooms continues to rise among athletes looking for a more effective workout. The philosophy behind this trend is to lower the breathable oxygen to emulate training at higher altitudes, making for a more strenuous workout. Some clients reported to use these altitude training systems include Prince Harry, Lance Armstrong, David Beckham, Cleveland Indians, Bear Grylls, and Michael Phelps. The training system may include high altitude “sleeping tents”. Many other athletes and organizations use altitude training as part of their exercise routine. PureAire’s Oxygen Deficiency monitor uses a zirconium oxide sensor. The end result is a monitor that does not require maintenance or calibration and is not subject to environmental “drift”. For these reasons, PureAire has been specified as the best fit for Hypoxico’s altitude solutions. The sensor life expectancy is 10+ years. In addition, the sensors provide complete linearity across the full scale of 0-25% giving an almost analyzer quality for the athletes. Gary Kotliar, President, Hypoxico, Inc. - “Prior to selecting PureAire, we were plagued with monitors that required regular calibration, replacement, and repair. We evaluated multiple solutions and chose PureAire as the only monitor that met our customer’s requirements for a no maintenance solution that delivered quality, accuracy, and low cost. PureAire’s commitment to customer service is icing on the cake.” Al Carrino, President, PureAire Monitoring Systems - “We are pleased to continue our partnership with Hypoxico. As the leader in altitude simulation, it is important they continue to deliver value to their customers in the form of an industry leading solution that includes a high quality monitoring system that is easy to own and offers the lowest total cost of ownership. We are excited to be part of this growing market.” About Hypoxico, Inc. Hypoxico is the leading provider of high altitude training solutions to both individuals and organizations around the globe. Hypoxico offers the highest quality products geared toward the three most effective methods of altitude training, • "Live High, Train Low" • Altitude Workouts • Intermittent Hypoxic Training (IHT) The proven benefit of altitude training includes maximized speed and endurance, elevated strength and power, and enhanced energy levels and overall wellness. For more information, visit www.hypoxico.com About PureAire Monitoring Systems, Inc. PureAire is the industry leader in gas monitoring solutions enabling organizations to ensure safe work environments, minimize compliance risk, and reduce associated costs. Over 1,000 organizations across the globe use PureAire gas monitoring solutions. Beginning in 1996, PureAire’s growth has been a result of an unbeatable combination of innovation and experience in solving safety and environmental needs for customers, as well as a total commitment to supporting the customer 24 hours a day, 7 days a week. For more information, visit www.pureairemonitoring.com.

Monday, June 11, 2012

PureAire’s O2 Monitor used in High Altitude Training Gains Recognition among Athletes

Since 2006 PureAire Monitoring Systems O2 Monitors have been used in Hypoxic High Altitude Training rooms. The training rooms are designed to lower the breathable oxygen using nitrogen, and the oxygen monitor is needed to maintain the environment. The technology used to lower the O2 level is used with a nitrogen generator. By lowering the breathable oxygen this creates a more strenuous workout for an athlete. The generator is important as it dispenses on demand nitrogen at any given time lowering the oxygen levels. For typical training, the oxygen levels are near 15% with the balance of nitrogen. At 15% oxygen the altitude system tricks the body to believe it is training around 8,000 ft above sea level. The O2 deficiency monitor operation range is 0-25%. PureAire’s O2 deficiency monitor was defined as the best product to maintain these stable oxygen levels. Hypoxico Altitude Training Systems is the first to start selling and marketing a product like this. PureAire’s oxygen deficiency monitor uses a zirconium oxide sensor. The monitor does not require maintenance or calibration. For these reasons, PureAire has been specified as the best fit for the altitude systems. The sensors life expectancy is 10+ years. In addition, the sensors are completely linear full scale of 0-25% giving an almost analyzer quality for the athletes. Some clients which have been reported to use these altitude training systems are Prince Harry, Lance Armstrong, David Beckham, Cleveland Indians, Bear Grylls, and Michael Phelps. On 60 minutes Michael Phelps talks about using an altitude tent, but said he did not want to show this room to cameras. Many other athletes use altitude training as part of their exercise routines as well. Altitude is characterized by the reduced partial pressure of oxygen. At a lower partial pressure, there is less oxygen in the air you breathe. It is this reduced oxygen content that stimulates the body to adapt and become more efficient in the uptake, transportation, and metabolism of oxygen. The HYPOXIC ALTITUDE TENT utilizes the same oxygen reduced air that one would find at high elevations. Our Hypoxic Generator continually separates out a portion of oxygen from ambient air before it is pumped into the enclosure. All other gases remain in the air, maintaining the atmospheric pressures of sea-level (or whatever altitude you are living at)1 The main O2 Monitor function which controls the desired training elevation, in the altitude room, is called hysteresis. Hysteresis is similar to how an air conditioner keeps a desired temperature range in one’s home. For example, if 70f degrees are set on a home’s air conditioner, when the temperature begins to rise to 71f, the temperature control (hysteresis) turns on the air conditioning lowering the temp back down to 70f. The PureAire O2 monitor has the same function. If the altitude room requires 15% oxygen, PureAire’s O2 monitors hysteresis will work similar to the air conditioner in a home. When the O2 levels rise to 15.5%, the O2 monitor will control the nitrogen generator lowering the O2 to the desired range of 15%. PureAire is the only O2 monitor being used for altitude training systems currently and with the growing amount of athletes training, PureAire believes only the demand for these training systems will go up in the future. Please contact PureAire toll free at 888-788-8050 with any questions or visit PureAire websites: http://www.MonitorOxygen.com, or http://www.PureAireMonitoring.com. 1) http://www.hypoxico.com/faq.shtml#4