Showing posts with label gas detection. Show all posts
Showing posts with label gas detection. Show all posts

Tuesday, November 10, 2020

Brewers Safely Capture and Reuse Carbon Dioxide

 


Brewing beer produces carbon dioxide (CO2), especially during fermentation (the process by which yeast converts sugars into alcohol). Estimates are that fermentation yields three times as much carbon dioxide as is actually needed to produce (including brewing, canning, and bottling) each batch of beer, with up to 15 grams of CO2 generated per pint of beer brewed. According to the British Beer & Pub Association, over 8 billion pints of beer were consumed in the United Kingdom alone in 2019, contributing to the production of a whole lot of carbon dioxide.

While large, global breweries, with their vast financial resources, have been recapturing and reusing carbon dioxide for a number of years, most craft brewers have considered carbon recapture technology to be prohibitively expensive. They have treated excess CO2 as waste, and vented it into the atmosphere, though that practice may make little sense, either economically or environmentally since, in order to produce subsequent batches, brewers must then turn around and purchase carbon dioxide to carbonate the beer, purge beer tanks and lines of oxygen, and to transfer the beer from tanks to bottles or cans.

And carbon dioxide purchase is a recurring line-item expense that eats into craft brewers’ profit margins.

Capturing and Reusing Carbon Dioxide

The good news is that recent technological innovations, driven in large part by companies working with NASA on space exploration and investigation, have led entrepreneurs to an awareness that CO2 recapture may in fact now be seen as a relatively affordable, and certainly environmentally friendly, option for craft breweries. The technology involves capturing the CO2 that has accumulated during fermentation and purifying the gas to make it suitable for reuse and/or sale.

The Washington Post has reported that Texas-based Earthly Labs has created a product called “CiCi” (for “carbon capture”), a refrigerator-sized unit that enables brewers to trap and reuse accumulated carbon dioxide. Captured CO2 is piped from the fermentation tanks to a “dryer” to separate water from CO2gas. The gas is next purified and chilled to a liquid for ease of storage and subsequent use.

Brewers can reuse their stored carbon dioxide to carbonate new batches of beer, as well as in the canning and bottling processes for the new beer. Craft Brewing Business, a trade website dedicated to the business of commercial craft brewing, reports that breweries can reduce monthly carbon dioxide expenses by 50 percent or more, and CO2 emissions by up to 50%, via carbon capture technology.

Breweries that capture more CO2 than they can use, may elect to sell the surplus to other breweries, bars, restaurants, and any other businesses that also use carbon dioxide. For instance, the State of Colorado, Earthly Labs, the Denver Beer Co., and The Clinic announced in early 2020 a pilot program in which Denver Beer Co. would sell its surplus CO2 to The Clinic, a medical and recreational cannabis dispensary, which would then pump the carbon dioxide inside its grow rooms to stimulate and enrich plant growth.

Oxygen Monitors Can Mitigate Unseen Dangers of Carbon Dioxide

Brewers and others working around carbon dioxide need to be aware of the potential risks associated with CO2. Carbon dioxide is an odorless and colorless oxygen-depleting gas. Since it deprives the air of oxygen, CO2 use presents a potential health hazard for brewery personnel.

According to the Occupational Safety and Health Administration (OSHA), an environment in which oxygen levels fall below 19.5 percent is considered an oxygen-deficient atmosphere and should be treated as immediately dangerous to health or life. When there is not enough oxygen in the air, persons working in the affected area may become disoriented, lose consciousness, or even suffocate due to the lack of sufficient oxygen. Because CO2 is devoid of odor and color, individuals working around it might well, in the absence of appropriate monitoring equipment, be unaware that a risk situation has developed.

As such, The National Fire Protection Association recommends that gas monitoring equipment be placed in storage areas or any place where carbon dioxide is used or stored.

PureAire Dual O2/CO2 Monitors

\

PureAire Monitoring Systems’ Dual Oxygen/Carbon Dioxide Monitor offers thorough air monitoring, with no time-consuming maintenance or calibration required. A screen displays current oxygen and carbon dioxide levels for at-a-glance reading by brewery employees, who derive peace of mind from the Monitor’s presence and reliable performance.

In the event of a carbon dioxide leak, and a decrease in oxygen to an unsafe level, PureAire’s Monitor will set off an alarm, complete with horns and flashing lights, alerting brewery personnel to evacuate the area.

PureAire’s Dual Oxygen/Carbon Dioxide Monitor is well-suited for facilities where carbon dioxide is used, such as breweries, bars, and restaurants. Our Dual O2/CO2 monitor includes both a non-depleting, zirconium oxide sensor cell, to monitor oxygen levels, and a non-dispersive infrared (NDIR) sensor cell, to monitor carbon dioxide levels. PureAire’s O2/CO2 monitors can last, trouble-free, for over 10 years under normal operating conditions.

Saving money, reducing greenhouse gas emissions, and ensuring employee safety...that is certainly something to which we can all raise a glass.



Thursday, April 11, 2019

From Farm to Market: Fruit Ripening


Fruit has a brief window where it is perfectly ripe. If farmers waited until every piece of fruit was ripe before harvesting, farming would be more labor-intensive as farmers rushed to pick ripe fruits. Prices might crash due to a short-term glut of fruit on the market. To ensure a steady supply and demand, keep prices competitive, and reduce food waste, farmers use artificial ripening procedures. One method for ripening fruit after harvest involves ripening chambers. Ripening chambers using ethylene, a natural plant hormone, enable the fruit to be harvested, stored, and transported to where it will be marketed and consumed. While ethylene ripening chambers are beneficial, they are not without risks.

How Ethylene Ripening Chambers Work

While there are other ways to artificially ripen fruit in ripening chambers, ethylene has become a favorite, since it occurs naturally in fruit.
Ethylene is a natural hormone found in plants. Fruits begin to ripen when exposed to ethylene, whether the exposure occurs naturally or artificially. In ethylene ripening chambers, unripe fruits are laid out, and the chamber is sealed.Ethylene gas is then piped into the sealed chamber. As the fruit is exposed to ethylene, the fruit
“respires”,which involves intake of oxygen andemission of carbon dioxide. For the ripened fruit to have the right color and flavor, the ripening should occur in a controlled atmosphere in which the temperature, humidity, ethylene, oxygen, and CO2 concentrationaremaintained at optimum levels.
However, there is a risk of combustion from the ethylene gas, as well as decreased levels of oxygen and increased levels of carbon dioxide inside the chamber.

How Oxygen/Carbon Dioxide and LEL Combustible Monitors Protect Employees

Low oxygen levels cause respiratory distress. If oxygen levels drop below the safe threshold for breathing, which could happen in the event of an ethylene gas leak, employees could suffocate. Suffocation is also a danger when there is too much carbon dioxide in the air. Ethylene gas used in ripening chambers would be hazardous if an employee were to enter the chamber before determining that oxygen and carbon dioxide were at safe levels.

A dual oxygen/carbon dioxide (O2/CO2) monitor detects the levels of oxygen and carbon dioxide within the chamber and sounds an alarm should the oxygen level falls to an OSHA action levelor if the carbon dioxide rises to an unsafe level.  By checking the monitor’s display, an employee will know when it is safe to enter the chamber.

PureAire Monitoring Systems has developed its dual O2/CO2 monitor with zirconium oxide and non-dispersive infrared sensor (“NDIR”) cells. The cells are unaffected by changing barometric pressure, storms, temperatures, and humidity, ensuring reliable performance.  Once installed, the dual O2/CO2 monitor needs no maintenance or calibration.

Ethylene is a highly flammable and combustible gas. If the gas lines used to pipe ethylene into the ripening chambers were to develop a leak, the chamber could fill with ethylene and reach combustible levels. A combustible gas monitor, which takes continuous readings of combustible gases, would warn employees of an ethylene leak within the chamber.

PureAire Monitoring System's Air Check LEL combustible gas monitor continuously monitors for failed sensor cell and communication line breaks. The Air Check LEL gas monitor is housed in an explosion-proof enclosure. If a leak or system error should occur, an alarm will immediately alert employees.

To learn about PureAire Monitoring Systems’ dual O2/CO2 monitors or the Air Check LEL Combustible monitor, please visit www.pureairemonitoring.com.

Monday, September 17, 2018

Why Gas Distributors Play a Crucial Role in Most Everyday Businesses?



Inert gases power a wide range of industries, including pharmaceutical, automotive, manufacturing, and semiconductor. While argon, helium, nitrogen, and cryogenic gases have benefits and uses, there are also risks with other gases such as halogens, refrigerants, combustibles, or etching gases. Gas detectors can monitor storage areas and facilities where these gases are used to guard against gas leaks onsite. Learn why it's critical to use one of these monitors in combustible gases distribution facilities.
The Role of Gas Distributors
Unless companies are manufacturing their own gases onsite through, for instance, a nitrogen generator, they rely on prompt delivery of gases they need for operation.
Gas distributors store a range of inert gases for use by manufacturers. Industry regulations mandate that gas distributors follow certain guidelines for the storage and disposal of these substances to reduce the risk of fires, explosion, gas leaks, and other incidents.
When everything is working correctly, gas flows as its needed from the supply tank to, for instance, storage dewars which are then readied for delivery. If a supply line develops a leak or a storage tank is not properly sealed, gas will leak into the air.
Many of these gases have no smell, color, or odor. This means that even if a facility is following all regulations regarding gas storage, there is no way that an employee could detect a gas leak in the moment when something goes wrong.
If storage dewars are compromised, gas will leak in the storage truck and at the delivery site, spreading the risk to third parties.
When one of these toxic gases leaks into the air, the consequences are dangerous. Hydrofluoric acid, a highly corrosive substance, is harmful to the health when it's inhaled or in direct contact with skin. Ammonia, which is commonly used as a refrigerant and in paper making, irritates the skin, lungs, and eyes.
Some gases are flammable when in contact with oxygen, which elevates the risk of fire. Others, like nitrogen, deplete oxygen from the environment. When oxygen drops below a critical threshold, workers can experience respiratory distress, cognitive distress, and ultimately death via asphyxiation.
To provide fast notification and decrease the risk of health hazards, it is recommended to install a universal gas detector wherever toxic gases are used or stored. To further guard against leaks, gas distributors can invest in durable equipment and train staff on proper handling of substances and appropriate emergency responses.
How a Universal Gas Monitor Can Protect Your Staff
A universal gas monitor can detect levels of gases even when the eye and nose cannot.
OSHA, the Occupational Safety & Health Administration, oversees worker safety in all environments, including gas distribution plants. OSHA requirements to prevent workers from being harmed at work include the use of a gas monitor where dangerous substances are used. By installing a universal gas detector, you can bring your gas distribution plant in line with mandatory requirements to keep workers safe on the job.
Not all gas monitors are created equal. It's important to choose a gas monitor that is flexible, especially if you work with a range of substances, and reliable for continuous operation. Gas monitors that do not take accurate readings place worker health at risk, because they may fail to spot a low-level leak.
PureAire's universal gas monitor detects a wide range of gases, including:
·        Ammonia

·        Chlorine
·        Fluorine
·        Hydrogen chloride
·        Hydrogen fluoride
·        Nitrogen dioxide
·        Phosphine
·        and more


PureAire's universal gas monitor is designed to function optimally once set up with no routine maintenance. The renewable sensor lasts for 3 to 8 years on average. Unlike other monitors, PureAire's sensor is rechargeable onsite, to save your gas storage facility time and money. While employees can check interface readouts for peace of mind, the gas detector works 24/7 out of the box. If the unit experiences a problem, error readouts are related to the control room.
Since the monitor has a built-in LCD display, employees can check substance levels at a glance. Dual level alarm relay contacts allow gas distributors to choose the appropriate level for their purposes. Alarms provide employees with sufficient notification to close valves, exit the area, and reduce the risk of fire.
PureAire is an industry leader with more than 15 years of experience developing oxygen monitors and universal gas detectors. Our products provide reliable reports to increase safety and peace of mind. Learn more about our universal gas monitor and view full product specifications online.
 https://www.pureairemonitoring.com/universal-gas-detector/
https://www.pureairemonitoring.com/paint-booths-or-areas-using-combustible-gases/
https://www.chemicalsafetyfacts.org/ammonia/

Tuesday, May 3, 2016

Chlorine Safety and Prevention: How to Protect Yourself from Chlorine Leaks

While chlorine gas is widely used in swimming pools, water treatment facilities, cleaning products, pharmaceutical products, and in many other industries, the gas is highly toxic when handled improperly. Training your workers on how to safely use chlorine is one part of health and safety best practices; monitoring your workplace for chlorine leaks is another. Learn about the hidden dangers in this common substance and how you can stay safe. 


The "Hidden Dangers" of Chlorine 

So many everyday things that you see and touch have come into contact with chlorine. The substance is a common cleaner and disinfectant because it is easy to use and inexpensive. Chlorine is also used in agricultural pesticides, in the manufacturing of drugs, in wastewater treatment facilities and the sanitizing of everyday drinking water, in paper manufacturing, in hospitality swimming pools and spas, and in many other products. No matter where it is being used, chlorine must be properly handled by all staff at all times. 

At room temperature, high chlorine levels are toxic. If chlorine gas comes into contact with substances including ammonia, ether, hydrogen, and turpentine, it can combust. Since this gas can cause breathing problems, it is dangerous to individuals with respiratory problems including asthma. 
The gas is yellowish at room temperature and has a distinct odor, so staff will be able to see and smell the substance. While this does aid in awareness of chlorine leaks, it is not sufficient to trust that your staff will see or smell leaked chlorine and leave. 

Employees exposed to chlorine can experience eye damage, coughing, choking, frostbite on the skin, and respiratory problems. In a worst case scenario, staff can die from suffocation due to sustained chlorine exposure. 

Fortunately, fixed gas monitors are an efficient way to protect staff from a chlorine leak. 

How PureAire Universal Gas Detectors Protect You From Chlorine Leaks

At PureAire, we offer universal gas monitors that protect against chlorine and other gases. PureAire's universal gas detectors are compact and designed for wall mounting in areas where you store or work with gases. Once installed, these detectors continually performs gas detection and monitoring. The maximum acceptable level of chlorine that workers can be exposed to, per OSHA regulations, is 1.0 parts per million (ppm). Chlorine is considered to be "Immediately Dangerous to Life and Health" when levels reach 10 ppm. As long as levels of chlorine remain below the acceptable safe level of 1.0 ppm, the detector is silent. Yet if gas leaks out and levels rise above the maximum acceptable level, the PureAire gas detector will sound an alert and flash a light so that staff will see or hear the alarm. 

Staff can then have enough time to stop what they are doing, exit the premises, and wait for emergency responders to contain the chlorine leak. When staff are alerted as soon as levels exceed those deemed safe, they can get out of the building before succumbing to chlorine-related health hazards. 

The universal gas monitor from PureAire protects against toxic gases including chlorine, hydrogen chlorine, ammonia, hydrogen fluoride, and other gases. Once installed, the PureAire detector will last for more than seven years without requiring any maintenance. If you seek a safe solution that delivers peace of mind and effective protection from chlorine leaks, PureAire's fixed gas monitor is a cost-effective, reliable option. 

Capable of chlorine gas detection in temperatures as low as -25 Fahrenheit up to to 22 Fahrenheit (-32 C to 50 C), these gas detectors offer flexible gas monitoring for visible and invisible toxins. PureAire's universal gas monitor is also water resistant and capable of detecting gases within a 30-foot range. 

Since PureAire's detectors have such a long lifespan, they are a convenient way to address gas leaks in the workplace. An optional long life renewable sensor extends the lifespan of these gas monitors by recharging the battery. 

After you install the gas monitor, your staff can work with chlorine and other gases with the certainty of knowing that their safety is protected. To protect your workers and your business assets, look to PureAire. View their fixed gas monitor or learn more at http://www.pureairemonitoring.com

Wednesday, April 20, 2016

PureAire Universal Gas Detector Offers Protection Against Toxic Levels of Ammonia



In March of 2016, an ammonia gas leak at a seafood processing plant in Boston left one worker dead. The fumes at the plant were so powerful that firefighters could not promptly enter the scene to mitigate the gas leak and try to save the staff member until much later. Reports show that 5,300 pounds of ammonia gas leaked out of the plant. If you work with ammonia at your facility, learn why this gas is so dangerous and one simple thing that you can do to prevent a tragedy like this from affecting your workers. 
The Hidden Dangers of Ammonia 
Ammonia is commonly used in refrigeration of dairy, meat, food processing, and cold storage. In fact, almost everything you can buy at your local grocery store has passed through an ammonia refrigeration site before making its way to your local store. 
A mixture of nitrogen and hydrogen, ammonia has been used in refrigeration since the 1800's. It is energy-efficient, inexpensive, more environmentally friendly than chlorofluorocarbon (Freon) refrigerant, and widely available via commercial manufacturing. While it may have started off as a refrigerant of food, ammonia is also used today for ice and water chilling in office buildings. In Europe, ammonia has additional applications in air conditioners in public buildings including hospitals and airports. The substance is also used in industries as diverse as semiconductor manufacturing, environmental emission monitoring, agricultural fertilizer, and chemical manufacturing.
As useful as ammonia is, it is also a dangerous substance when not properly stored. It can combust at high heat. While colorless, ammonia gas has a noxious odor. 
When workers are exposed to ammonia gas, they can experience skin and eye irritation. If concentrations of ammonia are high, burning and injury can result. In some cases permanent eye damage or blindness can occur. 
Workers will immediately know they are exposed to a harmful substance from symptoms including respiratory and nasal burning. Even though staff have a warning due to ammonia's odor, the substance causes adaptation. Workers may perceive a slight ammonia odor at low levels of exposure, and adjust to the scent so they can't tell when concentration has surpassed acceptable levels. 
In a worst case scenario, those exposed to ammonia will experience respiratory failure and die. The good news is, there are ways to protect staff from ammonia exposure using universal gas detection tools. 
How PureAire Universal Gas Detectors Protect Staff from Ammonia Exposure
PureAire's universal gas monitors protect against not only ammonia, but bromine, chlorine, hydrogen chloride, hydrogen fluoride, hydrides and other gases. Once installed, the monitor continually checks levels of gases and provides a visual and aural alert if levels of any substance exceed safe levels. 
This is a simple solution for round the clock gas monitoring for ammonia and many other hazardous gases. While ammonia has an odor, many other dangerous gases do not. Gas monitoring protects workers against substances they can smell as well as "silent killers" they cannot see or smell. With a universal gas monitor installed, workers can perform their duties secure in the knowledge that they will be alerted if ammonia or another substance leaks into the environment. 
After installation, the universal gas detector will work for over seven years with no maintenance. PureAire's gas monitor are built to outlast the competition to provide improved peace of mind for management and staff. 
If an ammonia leak were to happen, the gas monitor would sound an alarm so that workers can safely evacuate before succumbing to respiratory damage or failure. With staff outside the premises, everyone is thereby safe until first responders can deal with the leak. For example, in the Boston incident, the worker would have been able to escape the seafood plant with his life, resulting in an ammonia leak with no fatalities. 
Not only is gas detection the right thing to do for peace of mind, it can safeguard your business assets and personnel from dangers. To learn more about PureAire's line of universal gas detectors, please visit http://www.pureairemonitoring.com

Source

http://www.bostonherald.com/news/local_coverage/2016/03/worker_dies_in_ammonia_leak_at_plant_in_seaport

https://www.health.ny.gov/environmental/emergency/chemical_terrorism/ammonia_tech.htm

Tuesday, April 5, 2016

PureAire Universal Gas Monitor Receives UL Listing

PureAire is pleased to announce that its PureAire Universal Gas Monitor received the UL/CUL listing for models 99030 and 99031. PureAire’s Universal monitors comply with national and international safety standards, including UL 61010-1, CSA C22.2 NO. 61010-1-12-CAN/CSA, and IEC/EN 31010-1. 

Designed to protect against toxic gases including ammonia, bromine, chlorine, hydrogen chloride, hydrogen fluoride, hydrides and other gases, the universal gas monitor from PureAire offers continuous monitoring against unsafe gas levels. A universal gas monitor provides an easy and cost-effective solution for consistent monitoring for those organizations that need to work with these potentially toxic gases, yet wish to safeguard their workers. 

PureAire universal gas monitors are recommended for settings as diverse as cold food storage, chemical plants, semiconductors, manufacturing plants, pharmaceutical operations, and laboratory settings. PureAire's line of universal gas monitors allow facilities to work with these gases in a safe and responsible manner. The renewable sensor lasts for more than 7 years, longer than those of competitors. A built-in alarm sounds when gases surpass safe levels, allowing workers to take notice even when they cannot otherwise see, smell, or taste the gases. PureAire's universal gas monitors also have a 4-20 mA signal and 2 user-selectable relays, which can signal external horns, strobes, or fans. 

About PureAire

PureAire, which was founded in 1997, offers a line of oxygen monitoring devices and universal gas monitors for use in commercial, retail, educational, laboratory, and other settings. PureAire's line of universal gas monitors have sensors guaranteed to last for 7 years without maintenance, offering superior performance and reliability. The universal gas monitors run on a UL listed 24 VDC power supply. To learn more about PureAire or view their line of universal gas monitors, please visit www.Pureairemonitoring.com.