Showing posts with label O2 Monitor. Show all posts
Showing posts with label O2 Monitor. Show all posts

Wednesday, September 14, 2016

The Path to Safety for Pharmaceutical and Laboratories: Why O2 Deficiency Monitors May be Required?



To safeguard against gas leaks in pharmaceutical industries and laboratories, businesses are turning to oxygen deficiency monitors. Learn when, where, and why an oxygen monitor or O2 monitor may be required.

Oxygen Monitors in Medical and Pharmaceutical Settings

In the hospital setting, nitrogen gas is widely used. During surgeries, nitrogen powers equipment and preserves blood and tissues. Nitrogen gas is also used to freeze and destroy tissue. 

Hospitals work with other gases, such as carbon monoxide, for lung diffusion testing and culturing. Laboratories growing cultures for analysis, testing, and research require that the tissue samples be grown under strict environmental conditions. Medical gases can control the environment to ensure that tissue samples are not contaminated by any sort of bad bacteria. 

Magnetic resonance imaging machines use nitrogen gas to cool the magnet and keep the machine working properly. As such, it is critical to have an oxygen monitor in an MRI room to protect the safety of patients in the MRI machine and technicians performing the MRI. In 2000, a technician was killed and several others were injured when nitrogen escaped from the closed chamber and into the room. 

Pharmaceutical facilities also rely on nitrogen gas for multiple uses. Since the gas can keeps oxygen out of an environment, it can ensure the purity of a chemical compound or preserve the longevity of a packaged medical product. Nitrogen is also kept on hand as a natural fire suppressant and purifier. Nitrogen gas generators allow pharma plants to access nitrogen gas on demand for a low cost. 

How an Oxygen Deficiency Monitor Protects Workers in Laboratories, Hospitals, and Pharma

Staff and patients in hospitals, pharma, and laboratories need to stay safe. By installing an O2 monitor in any rooms where potentially harmful gases are used, employers can safeguard their workers' and their patients' air quality. 

The wall-mounted monitors continually check the levels of oxygen in the air. As long as oxygen levels are above the minimum amount, the alarm remains silent. If a gas like nitrogen were to leak in MRI rooms or lab storage facilities, the amount of oxygen in the air would begin to drop. Once oxygen fell to the minimum safe level, the alarm would go off, warning staff of the problem. Staff could then leave the room and evacuate patients. 

While these devices are important to protect public safety, they also keep the facility in compliance with the law. Hospitals, medical, and pharma facilities are required to install oxygen monitors where potentially hazardous gases are used. 


Since medical and pharma settings may store and use gases in many locations, multiple oxygen monitors may be needed. PureAire's oxygen sensors can last for 10 years with no maintenance. Our quality oxygen deficiency monitors are of the highest quality, to provide peace of mind and total protection in medical and pharmaceutical settings. Learn more about the line of oxygen monitors offered by PureAire at www.pureairemonitoring.com.

Tuesday, August 30, 2016

Olympic Training: Use of Cryotherapy and Hypoxic High Altitude Training


Olympic athletes have been known to try some pretty strange things to enhance their performance. Major Olympic swimming star Michael Phelps has been relying on a special device for the last year, a high-altitude sleep chamber that retails for $15,000. While therapies like high-altitude training and cryotherapy can be beneficial, they do have risks. Learn why you need an oxygen monitor for cryotherapy and high-altitude training chambers.

How High Altitude Training Benefits Athletes

A high-altitude chamber mimics the conditions of high altitude. Phelps keeps the air inside his chamber at 8,500 to 9,000 feet. High altitude environments have less oxygen than low altitude environments. As a result, your body has to work harder to breathe. For Phelps, this means that he can train his body to perform better even while getting a good night's sleep.
The high-altitude chamber Phelps used is made by Hypoxico. Their high altitude chambers can be adjusted to a maximum level of 12,500 feet. By sleeping in a low oxygen environment and living in an oxygen-rich environment, athletes can avoid the fatigue and dehydration associated with living in a high altitude environment. Since bodies produce more red blood cells at high altitude, the sleep chamber also promotes faster muscle recovery. This is essential for training.

Michael Phelps is far from the only athlete to try this type of sleep training. It's popular among endurance runners, who rely on breathing capacity to fuel their runs. Dwayne Wade, Lebron James, and Santonio Holmes also use the high altitude training. Pro golfer Tiger Woods reportedly relies on high altitude training too.

How Cryotherapy Benefits Athletes

In addition to sleeping at high altitudes, many top tier athletes also turn to cryotherapy. Whole body cryotherapy exposes the body to extreme temperatures of -240 Fahrenheit for a set period of time. Athletes can stop the treatment at any time using safety measures. The dry chilled air elicits a response from the circulatory system. As a result of spending a few minutes in a cryohealth chamber, athletes decrease inflammation and lactic acid. They also initiate self healing through the nervous system.

The San Antonio Spurs, Los Angeles Clippers, Los Angeles Sparks, Minnesota Timberwolves, Toronto Raptors, and TCU Horned Frogs all rely on services from Cryohealthcare. Floyd Mayweather Jr., LeBron James, and Kobe Bryant also depend on cryotherapy for their competitive edge.

Why You Need an Oxygen Monitor with High Altitude and Cryotherapy
Both high altitude sleep chambers and cryotherapy put athletes at the risk of exposure to levels of oxygen that are too low. When the air does not have enough oxygen to breathe, athletes can suffer respiratory complications and may die from asphyxiation.
High altitude chambers need an oxygen deficiency monitor to measure the levels of oxygen in the sleep chamber. If the settings on the machine malfunction, too much oxygen could be removed from the air. With just a couple of breaths of oxygen-deficient air, someone can become unconscious. Within minutes, they could die.

Cryotherapy chambers rely on nitrogen gas to keep the air chilled to -240 Fahrenheit. Nitrogen gas is known to deplete oxygen from the air. As long as the chamber has enough oxygen, nitrogen can be used to chill the air without posing a health hazard. Yet if there is too much nitrogen, the air will become oxygen-deficient. Thus, anyone taking a dip in the cryohealth chamber could become a victim of death by asphyxiation.
To safeguard users, cryohealth chambers rely on an installed oxygen monitor to continually check levels of oxygen in the air. Likewise, the sleep chamber uses an O2 monitor to track oxygen levels during use. With an O2 monitor installed, users can enjoy their form of training without worry that it will harm their health.

Hypoxico relies on PureAire's line of oxygen deficiency monitors as a safety feature in their high altitude sleep chambers. PureAire's O2 monitor contains a zirconium sensor, which can function properly for up to 10 years. The monitor will provide instant notification if oxygen falls below safe levels, so that athletes can escape in time.

To learn more about the line of oxygen deficiency monitors from PureAire, please visit www.pureairemonitoring.com.

Sources:

http://www.techtimes.com/articles/61392/20150618/cryotherapy-works-why-star-athletes-love.htm

Friday, August 19, 2016

Use of Oxygen Monitors for Nitrogen, Argon, or Cryogenics and Where They Are installed



An oxygen deficiency monitor or O2 monitor is found in many settings where colorless, odorless gases -- including nitrogen, argon, CO2, and cryogenic gases -- are used. Always monitoring, the oxygen detector can tell when gas levels rise above those deemed safe, and let off a timely alarm. Learn which settings commonly use an O2 monitor, how the monitor works, and why it is beneficial. 
How Does an Oxygen Deficiency Monitor Work? 
With the name of oxygen monitor, you might wonder why these devices are used in the presence of other gases, such as nitrogen. Gases like nitrogen and argon deplete oxygen from the environment. If you introduce nitrogen into a lab setting, for example, oxygen levels start to drop. Since nitrogen does not have a color or scent, lab workers would be unable to perceive the leak. 
As oxygen levels fall, lab workers would become confused and experience respiratory difficulties and loss of coordination. In a matter of minutes, lab workers could die from asphyxiation. 
When an oxygen deficiency monitor is installed, it becomes easy to tell when a potentially hazardous gas has escaped into the room and is depleting levels of oxygen. Set to go off when oxygen falls below safe breathing levels, the O2 monitor flashes an alert and sounds an alarm to provide immediate notification. This way, staff have enough time to safely clear the premises before experiencing negative health effects. These monitors offer a cost-effective way to protect staff and maintain a safe working environment, and are a best practice for working environments that use these gases.  
Where Oxygen Monitors Are Installed
Since oxygen monitors protect against a range of gases, they are used in many different industries and working environments. Some of the places that use oxygen monitors include: 
  • Laboratory settings - As the example above indicates, lab workers often directly work with potentially dangerous gases in study, research, and teaching. An oxygen monitor in the lab setting operates as discussed in the example above, alerting workers if gases leak. Laboratories are required to install these devices by the 2008 NIH Design Requirements Manual as well as existing OSHA regulations. 
  • Colleges and universities - Since universities have laboratories and work with these gases in teaching and research environments, it should come as no surprise that they have oxygen monitors. In the university setting, these monitors may be installed in classrooms, labs, research facilities, and storage areas to protect students, staff, and facilities workers. As this example illustrates, it is important to use a separate oxygen deficiency monitor in any area where these gases are used or stored. From a leaky pipe to a faulty storage tank, gas could escape in many ways - always posing a health risk. 
  • Medical settings - Hospitals and medical centers need to keep blood, tissue samples, and other supplies properly chilled so they can be used for patients. The cryogenic gases are an easy, inexpensive solution to the storage issue. Yet, anywhere these gases are being used, there is the risk for a leak. In medical settings, an O2 monitor may be used in hallways and individual rooms where nitrogen containers are held. 
  • Food processing plants - It is common to use nitrogen gas in food processing plants as a safeguard against oxidation of food and beverage products. When oxygen enters the food packaging, it causes early ripening and spoilage. Thus, nitrogen gas helps to protect the food and allows for longer storage on the shelf. Since the gas is cheap, environmentally friendly, and easy to use, it is a common solution in the food processing industry. To protect food processing workers, it is critical to have an oxygen monitor evaluating levels of oxygen in the air in case of a nitrogen leak. 

PureAire's oxygen monitor contains a zirconium sensor, which performs reliably for up to 10 years. This long-lasting sensor makes our oxygen monitors a good investment for many industries. These O2 monitors are easy to set up, work in a wide range of temperatures, and require no maintenance once they are installed. To learn more about oxygen deficiency monitors from PureAire, visit www.pureairemonitoring.com.

Tuesday, June 7, 2016

Air Separation Plants and the Use of Oxygen Monitors


Air separation plants are critical for many different industries, from clean energy to manufacturing. Nowadays, cryogenic is the most common type of distillation used to separate air into its component gases - nitrogen, oxygen, and inert gases including helium and argon. If your industry relies on air separation for product development or manufacturing, then knowing how the process works is an important part of operational safety. Learn about air separation plant operation and safety protocol to be informed. 

How Air Separation Plants Work

In the cryogenic air separation process, air is chilled to the liquid stage. At this point, nitrogen and oxygen can be separated out from the inert gases in the air. Each compound can then be distilled at boiling temperature, thereby returning the liquid to a vapor state. The resulting nitrogen and oxygen gases are highly pure. 
To get the air ready to be separated, plant employees first filter the air to remove particles, such as dust. Next, the air is pressurized and then filtered up to several times to remove carbon dioxide, which can freeze the distilling equipment. 

Using a still and heat exchanger, workers heat and cool the gas, turning it into a highly pure liquid. The oxygen liquefies and falls to the bottom, while the highly pure nitrogen gas floats above the oxygen since it is lighter. 
Once separated, the gases can be kept in gaseous state or returned to a liquid state via chilling. Many air separation plants have elaborate pipe systems, whereby the oxygen or nitrogen gas can be transported directly to production lines. 

Air separation plants have many diverse uses. Pure oxygen gas is a basic component of metalwork including steel manufacturing. Nitrogen gas helps preserve edible oils from oxidizing and is used as a safeguard against combustion in shipping and cargo transit. 

The cryogenic process is effective and efficient at separating air; however, it does pose some safety risks. Air is safe to breathe when nitrogen and oxygen are together in the appropriate ratio. As nitrogen and oxygen are separated two distinct hazards emerge. 

Pure oxygen increases the fire danger in an environment. If not controlled, this could turn dangerous. 
Pure nitrogen depletes oxygen and can cause death via asphyxiation. Since nitrogen is colorless and odorless, workers may not know if the distilled nitrogen has escaped the still and infiltrated the environment. Argon acts in a similar manner, yet is a less common hazard since it is present in trace levels in oxygen. 
Without a safeguard of an oxygen monitor, staff may be exposed to toxic gases. In a worst-case scenario, staff could die. 

How an Oxygen Monitor Protects Staff

Between 1992 and 2002, 80 workers died from nitrogen exposure. Workers may fall unconscious after even a single breath of oxygen deficient air. If individuals do not receive oxygen in a matter of minutes, the consequences are grave. 

Educating staff about the dangers of these gases is a first step toward operational safety. Installing an oxygen or O2 monitor is the next step to keeping everyone safe. 

An O2 monitor measures the levels of oxygen in the air at any given time. The device takes sample readings of the air and remains silent as long as there is sufficient oxygen in the environment. Since argon and nitrogen deplete oxygen, the level of oxygen in the room will decrease if a gas leak occurs. When oxygen levels fall below the minimum safety level, the O2 detector will sound an alarm. Trained staff will then know to evacuate the premises until emergency assistance arrives. 

Oxygen deficiency monitors from PureAire are guaranteed to perform for 10 years. These oxygen deficiency monitors have a zirconium oxide sensor, which accurately measures air oxygen levels in temperatures as low as -40 Celsius. The O2 monitor from PureAire is an efficient, cost-effective way for plants using nitrogen, helium, or argon to keep staff safe from the known health hazards of these gases.

If you seek an oxygen monitor that needs no maintenance, no calibration, and is guaranteed to last, you may be interested in PureAire's line of products. Learn more at www.pureairemonitoring.com or by emailing info@pureaire.net for more information. 

Thursday, March 24, 2016

Fertility Clinics and Egg Freezing: Nitrogen Use and How to Remain Safe

For women who want to have children when the time is right, egg freezing is a viable option and one that has become more popular in recent years. As an abundance of fertility clinics pop up nationwide, it is important to consider the safety implications of IVF, egg freezing, and fertility clinics. Dive into the world of fertility clinics to understand how eggs remain viable -- sometimes for years after harvesting -- and what risks the environment holds.

How Do Fertility Clinics Harvest and Store Eggs?

During the monthly menstrual cycle, women release a viable egg. In the fertility harvesting process, IVF clinicians administer hormones that increase egg production so they can harvest and store multiple eggs in a one-time procedure.
Doctors first administer hormone injections to inflate egg production prior to harvesting and storage. Three days after the final injection, the eggs are ready for harvesting. At this point, female patients then have eggs harvested from their ovaries using needles. Now the patient's role is simply to leave the eggs at the IVF facility until she wishes to be inseminated.
Traditionally, eggs were frozen for long-term storage, then thawed out when patients wanted to use the eggs. This method worked, but had a suboptimal success rate during IVF.

A new method, termed vitrification, increases the success rate of egg freezing for in vitro fertilization. Vitrification uses a flash freezing process to quickly freeze the eggs for long-term storage. After the eggs have frozen, they are then stored inside tanks of liquid nitrogen until they are needed. The new method reduces the formation of ice crystals, which can damage the egg during the thawing out.

The main risk that doctors counsel patients on is the chance that some or all of the eggs will perish in the process. Freezing of eggs is still a relatively new procedure. However, there is a greater risk involved. One that could affect female patients, their eggs, and fertility clinic staff: The risk of liquid nitrogen exposure.

Nitrogen Warnings in the Fertility Clinic Setting

Liquid nitrogen is perfectly safe as long as it remains in storage tanks. If even a single tank were to develop a leak, and the substance were to spill out into the fertility clinic, a lot more would be at stake than the viability of stored eggs for in vitro fertilization.

Nitrogen has the potential to deplete oxygen from an environment. At first, this may cause discomfort, dizziness, or confusion. As the leak continues and displaces more oxygen from the room, staff can asphyxiate. Since the gas cannot be seen or smelled, employees will not know something is wrong until it is too late and lives are lost.
For the safety of clinic staff, an oxygen deficiency monitor can be installed near the liquid nitrogen tank. This monitor takes periodic readings of the oxygen levels in the room. When everything is working properly and the oxygen is within the normal range, the monitor remains silent yet vigilant. In a worst case scenario where a nitrogen leak does develop, the O2 monitor will sound an alert once the oxygen in the room falls below acceptable levels. The alarm gives staff enough notice to escape the premises before being overcome by the lack of oxygen.
Like a carbon monoxide detector, an oxygen deficiency monitor does not really do anything until something goes wrong but can save lives in the event of an emergency. As with a carbon monoxide detector, it is important to select and install a quality O2 monitor.

The latest generation of oxygen monitors from PureAire come with a zirconium sensor, which requires no calibration or maintenance. Staff can install the O2 monitor in the IVF facility and remain assured that it will work for a period of 10 years with no maintenance of any kind.

For a reliable oxygen deficiency monitor, look to PureAire, a company with over 15 years of experience in the field. Learn more about PureAire's products at www.pureairemonitoring.com.


Monday, December 14, 2015

The Hidden Dangers and Facts of Cryotherapy: How to Remain Safe and Get Health benefits too

While cryotherapy or frost therapy has been used for millennia, the new cryotherapy center fad that's become popular in salon culture has come under scrutiny when a 24-year-old woman who worked at a cryohealth center in Las Vegas was found dead after using a cryo chamber at work. Learn more about cryotherapy, what it claims to do for the body, and whether or not it can be safely used. 

The Health Benefits of Cryotherapy

Advocates claim that there are many benefits of cryotherapy and that the treatment is highly safe when it is properly performed. The type of whole body cryotherapy in use at cryohealth centers today was developed in 1978 as a rheumatoid arthritis treatment. While this treatment is often covered by health insurance in other nations, the U.S.healthcare industry does not recognize cryotherapy for insurance purposes or much regulate the field. 
Unlike immersion in an ice bath, the chill of cryotherapy is dry so it does not feel uncomfortable, like submersion in an ice bath would. Exposure to chilled air can treat sports injuries, muscle soreness, joint pain, pain and inflammation associated with health conditions like arthritis or fibromyalgia, and immune function. Some even claim that cryotherapy can help with weight loss or delay the aging process. 

Is Cryotherapy Safe? 
Individuals with certain health conditions -- including hypertension, heart disease, seizures, anemia, pregnancy, and claustrophobia -- should not use cryotherapy. For other individuals, cryotherapy has generally been considered safe. Some individuals may experience redness or skin irritation, an allergic reaction to the cold, frostbite, or skin burns. 
If the individual stays in the cryotherapy chamber longer than recommended, or the facility does not take the proper precautions, health risks increase. Typically, people are only supposed to expose themselves to the cold temperatures in the cryo chamber for two to three minutes. The salon where the woman died was apparently selling 30-minute sessions, the New York Post reports. 30 minutes is too long to spend in frigid temperatures. 

In the case of the employee who died in a cryotherapy chamber, no one apparently knew the woman was in there since she went in alone after work. Most cryotherapy chambers only allow people to use the facility when someone is onsite monitoring them as a first line safety precaution. 

Even if the employee did not follow proper procedures in entering the cryo chamber, her death raised awareness of hidden dangers in this unregulated industry. People want to know whether this popular treatment is safe for them. The salon where the woman died was not licensed with the State of Nevada.

Safety Measures for Cryotherapy

Cryotherapy can be safe when performed by a licensed facility that has safeguards in place to make sure that those undergoing treatment do not stay in too long, do not get overlooked, and are not exposed to environmental hazards. 
One reliable way to monitor the environment of the cryo chamber is to use an oxygen monitor or oxygen deficiency monitor. An oxygen deficiency monitor continuously measures the amount of oxygen in the environment and sets off an alarm if oxygen falls below a safe level. 

Cryohealth chambers use a form of nitrogen to create a dry frost and chill the chamber. Nitrogen, when used in high doses, creates an oxygen deficient environment. In a worst-case scenario, the room could become so oxygen deficient that anyone inside could suffocate to death. 
Since nitrogen does not have an odor or a color, individuals cannot see it. When a cryohealth chamber is equipped with an oxygen monitor, the air inside will not fall below safe levels without first alerting staff to the drop in oxygen. Staff can then assist any patients in evacuating the cryotherapy chamber before something bad happens.  

PureAire offers O2 monitors that are made with zirconium sensors, which are guaranteed to last for at least 10 years and hold up equally well in humid and dry environments. Once the facility sets up O2 monitors in every cryo chamber, staff can rest assured that the monitors will alert them to any sudden change in oxygen levels with enough time to get people outside of the chamber before something bad happens. 

When a facility uses oxygen monitors inside the chambers, has a license from the State, and ensures that staff monitor the chambers during treatments, cryotherapy can be performed safely. 

To learn more about PureAire's line of oxygen deficiency monitors, visit www.pureairemonitoring.com.


Additive Manufacturing 3D Printing: The Growth Progress and Need for Safety Monitors

3D printing is officially skyrocketing, with industrial applications in medical, biotech, aerospace, defense, and consumer electronics industries growing daily. At the heart of this acceleration is the additive manufacturing or AM process, which allows for easy printing from computer-aided design templates. As this new technology reaches its tipping point, review what the growth process says about the safety of 3D printing. 

3D Printing: Additive Manufacturing at a Tipping Point

No longer solely the terrain of artists and inventors making one-off products, 3D printing is finally going mainstream: Major companies including GE, Boeing, Lockheed Martin, NASA and Google have adopted 3D printing as of 2014. This widespread adoption heralds the move of 3D printing away from niche technology and toward a mainstream staple of next-generation manufacturing.
In the 3D printing process, the printer deposits layers one at a time, essentially building up the prototype before bonds the layers together. In the laser sintering process, a special laser melts and fuses the layers together, to bring the design to life. Because employees can make changes to the prototype between items, it is relatively easy to make changes to the item color, size, or shape from one printed item to the next. This makes it possible for individual medical devices or accessories to be printed from a select stock of computer-aided design (CAD) templates. 
Major companies like those mentioned above can afford to make the investment in 3D printing and AM because they have the funds to purchase the costly equipment needed for the initial foray. While 3D printers have become more widespread, they are not cheap. Compared with other types of manufacturing, it costs a lot to make something like an airplane part or a dental device using 3D printing over traditional printing. 

However, the initial expenses in 3D printing represents the peak costs to the business. After the device or the part is perfected, the company can utilize the same equipment and printing patterns to effectively mass produce the unit. Aside from ongoing expenses for printing supplies, the cost to produce subsequent parts is quite low. 

The competitive advantage of being able to offer something like a personalized medical device is well worth the initial cost of 3D printing. As printable materials continue to expand, more companies will invest in 3D printing to develop niche-appropriate custom products and solutions. This is not without its dangers to the business and its employees. Protect yourself by learning more.  

The Hidden Dangers of 3D Printing

While it may seem like a safe process -- and, indeed, the end result is quite safe -- 3D printing does utilize some potentially dangerous materials. Argon gas is particularly common in certain types of 3D printing. In the printing process, the 3D printer deposits thin layers of powder to effectively build the form that is being produced. The argon gas allows the different layers of powder to fuse together during the laser sintering, bringing the product to life in three dimensions. 
Argon is relatively inexpensive and highly effective at this task, which accounts for its widespread use in this new niche. However, argon is also a dense gas that is naturally heavier than oxygen. Were argon to escape from the 3D printing environment and enter the workshop or manufacturing floor, it would deplete the oxygen in the room. Any staff working there would thus face death by asphyxiation. Since argon is colorless and odorless, there is no easy way for staff to tell there is a problem. 

As 3D printing becomes more widespread, businesses must take the appropriate safety measures to ensure a safe working environment. They must inspect printing equipment to ensure that it is functioning properly and argon will remain contained in the printer. They must also introduce safeguards to protect staff in case of a malfunction. 
One simple and cost-effective solution is to install an oxygen monitor, which is also known as an O2 monitor. This type of sensor continually monitors the levels of oxygen in the room. If oxygen levels falls below the critical safety levels, such that employee health would be threatened, the oxygen monitor sounds an alarm to alert staff to the health threat. Staff can then evacuate immediately, and appropriate measures can be taken to secure the workplace environment and protect the printing technology.

PureAire offers sophisticated O2 monitors, which use a 10+ year no calibration sensor to offer durable everyday protection. PureAire's sensors are the perfect choice for 3D printing environment protection. To learn more about PureAire's lineup of oxygen monitor for argon gas detection, please visit http://www.pureaire.net or email us at info@pureaire.net.

Source

https://hbr.org/2015/05/the-3-d-printing-revolution

http://www.pureairemonitoring.com/argon-gas-3d-printing-stay-safe/

Thursday, September 10, 2015

Oxygen Monitor for Foup's in Semiconductors and Cleanrooms


Over time, the contamination control requirements in the semiconductor industry have become more stringent. Employees now must spend more time adhering to cleaning protocols to preserve the sanitary nature of the environment and comply with regulations. The front-end unified pod (or FOUP) began appearing in semiconductors in the 1990s, serving as a transportation box to safely and securely hold silicon wafers and ensure easier compliance with the industry's  contamination control requirements.

FOUPs allow the wafers to remain in a sterile environment, while also remaining isolated from the cleanroom itself. Not only does this save time, this saves money by lowering the maintenance needs and investments needed to maintain a clean room. Widespread today, FOUPs must be properly cleaned and maintained in order to remain functional. Since a single FOUP can cost $1,000’s so this is not something to be taken lightly by staff. 

Why Cleanliness is Critical to the Semiconductor Industry

Maintaining a cleanroom is so important because air particles can get on equipment or tools and compromise them. During manufacturing processes such as etching, the wafers held inside FOUPs are removed from the isolated environment of the FOUP and then subject to different chemicals. After the etching process ends, trace amounts of these chemicals remain on the wafers. If these were to be returned to the FOUP, they would contaminate the closed atmosphere with chemical residue. This could wreak havoc on the remaining wafers stored in the clean environment of the FOUP. Were this to happen, FOUPs and the wafers inside would need to be cleaned - a very expensive and time consuming process. 

The average FOUP can last for roughly five years before it needs to be replaced. To extend its lifespan and keep all components clean and sanitary, it is necessary to clean FOUPs periodically and to maintain good laboratory habits to minimize mishandling of FOUPs.

Compressed dry air or an inert gas such as nitrogen are common choices for effective cleaning of FOUPs. Studies have shown that passing nitrogen gas over the lower ports and front-end environment of the FOUPs is a reliable way to clean the interior by removing debris and chemical residue stuck inside. While this is useful for reliable FOUP cleaning, introducing nitrogen into the laboratory environment can pose a safety hazard.

Safety Risks of FOUP Cleaning With Nitrogen

Nitrogen gas can displace oxygen if it is released in a closed environment. Were nitrogen to leak from the FOUP and into the clean room, it could reduce levels of oxygen in the air below safe breathing levels. In a worst-case scenario, staff could become sick or die from lack of oxygen. Since both oxygen and nitrogen are colorless and odorless gases, staff cannot tell how much oxygen is in the air, or whether nitrogen used to clean FOUPs has escaped through a leak.
An oxygen monitor can evaluate the levels of oxygen in the air to ensure that nitrogen used to clean FOUPs does not make its way into the clean room, to compromise the air quality and safety there. A wall-mounted O2 monitor takes periodic readings of the level of oxygen in the room. As long as oxygen levels remain in an acceptable range, the sensor will continue to operate as usual. 

If oxygen levels were to drop such that employee health and safety might be compromised, the oxygen deficiency monitor would set off an alarm that would tell staff to evacuate. Staff then have enough time to exit the clean room and avoid health problems associated with oxygen deficient environments. 

When looking for an oxygen monitor for FOUPs, it is vital that the O2 monitor be as hardy and long-lasting as the FOUPs themselves. At PureAire, we make oxygen sensors guaranteed to last for 10 years. Our O2 monitors do not need calibration or maintenance to perform, unlike other brands of oxygen monitors. To ensure a clean, safe environment, while protecting your investment, choose the best in oxygen deficiency monitoring. Learn more about our products at our website, www.pureairemonitoring.com.

Source

http://www.sdram-technology.info/FOUP.html
http://www.entegris.com/Resources/assets/1013-0667.pdf

http://micromagazine.fabtech.org/archive/04/08/keyhani.html

Tuesday, March 24, 2015

PureAire O2 Monitor for Food Manufacturing Tunnel/Freezers with N2 and CO2: Using a 10 Year No Calibration Sensor


For flash freezing nothing beats a liquid nitrogen or carbon dioxide immersion or tunnel style freezer for efficiency, overall performance, and cost savings. If you haven't yet switched to an immersion freezer, doing so now could position you to better compete in your market segment and save money over time. Learn more about why these freezers are a must for frozen food manufacturers.

Immersion Freezers: How They Work

Ideal for freezing seafood, poultry, meat, and marinated or glazed products, these freezers use a conveyor belt to ferry food items through a liquid nitrogen or carbon dioxide bath. When the food is fully immersed in the gas, which is held at a steady temperature suitable for freezing food items, it freezes completely in seconds. This locks in nutrients, flavor, and texture to preserve the best qualities of the item.

Unit controls accommodate for fluctuations in the product load and variations in temperature of the incoming food items to enforce quality control every time. A turn up/turn down capability allows you to save money by moderating unit performance; the unique space-saving design and tunnel orientation reduces air infiltration and helps maintain best practices in unit sanitation.

By offering a better yield retention, a low capital investment, and lower operating costs, these units allow you to increase your production rates without increasing your staffing or your physical footprint. The immersion freezing system is customizable for a wide range of products and ensures the consistent quality in frozen foods you need.

These freezers run on inert gases, which deplete oxygen from the air. To protect workers and maintain safety, you must ensure that your freezer has an O2 monitoring system, which ensures that there is enough oxygen in the environment and alerts staff if the level of oxygen falls below the minimum safe level.

Why You Need an Oxygen Monitor For Your Immersion Freezer


If oxygen levels in the work environment get too low, staff working in the area may not have enough oxygen to breathe and could asphyxiate. PureAire's O2 monitors are capable of performing in sub-zero environments, where other oxygen sensors may fail to perform consistently.

The oxygen monitor keeps tabs on the amount of oxygen in the environment at all times. Even in a sensitive environment like the tunnel or immersion freezer, where the temperatures are constantly changing as food cycles off of and on to the conveyor belts, the oxygen monitor is able to provide a stable reading to ensure accuracy and protect your employees.

This oxygen deficiency monitor features a zirconium sensor, which is able to detect oxygen levels across the temperature spectrum and regardless of humidity. The oxygen monitor is guaranteed to perform accurately for a period of 10 years or more, without requiring the time-consuming maintenance that another oxygen detector might need. Additionally, you will not need to calibrate the oxygen monitor, as you would with other models. This offers an improvement over disposable sensors, which increase your bottom line and the amount of waste you produce.

When you switch to a tunnel or immersion freezer, you stand to boost your production capacity and your bottom line. Oxygen detectors from PureAire can help you save as much as $475 per year off our operating expenses while supporting your overall business growth.

With over 15 years of experience, PureAire is the industry's leading expert in oxygen monitoring. To learn more about the PureAire Oxygen Monitoring System, visit the company's website at www.Pureairemonitoring.com

Thursday, December 18, 2014

Argon Gas, 3D Printing, and How to Stay Safe

For the average person, Argon gas is not a topic of daily conversation, or, for that matter, any conversation, ever. It may be surprising to learn that argon is the third most common gas in the earth’s atmosphere, though most people know little about it. The word argon itself comes from a Greek word meaning ‘inactive’ because of its lack of chemical reactions. Argon is colorless, odorless, tasteless, and non-toxic, but this doesn’t mean it is completely harmless. Because it is 38% denser than air, it can displace the oxygen in an enclosed area, asphyxiating anyone inside.

When using the right safety precautions, like an oxygen deficiency monitor, argon can be very useful. It is used as a shielding gas in metal work and welding to prevent burning, and can even be used to extinguish fires. As a preservative, argon can be used to displace oxygen out of packaging to extend shelf life by preventing oxidation and spoilage. Even light bulbs are filled with argon to prevent oxidation of the filament.

One of the most modern uses of argon gas is in selective laser melting, which is a type of 3D printing. In this process of additive manufacturing, layers of a powder are bonded together using a powerful laser (as opposed to sinter bonding them). Argon is an inert gas, and relatively inexpensive, therefore it creates the perfect environment for this process to take place in. The use of argon here permits a tightly controlled atmosphere, allowing for an oxygen free environment. Using this amount of argon requires the use of an oxygen monitor for safety.

An oxygen deficiency monitor tests the percentage of oxygen in an enclosed area to ensure it is safe to breathe. If a gas like argon were to leak, it would push breathable oxygen out as it filled the room displacing any breathable air. Having no color or odor, a person in the room would be unaware of this exchange of gasses until it was too late. Having an oxygen monitor, like ones sold by PureAire Monitoring Systems, would alert anyone around of a gas leak in time for them to seek safety. If you are interested in using argon gas, contact PureAire Monitoring Systems to learn about how easy it can be to stay safe with an oxygen monitor. Argon has an important place in our modern world, so spread the word and share the knowledge of how to use argon while practicing safety.

Friday, October 17, 2014

Looking Hot while Staying Cool: Liquid Nitrogen at the Club

You feel the pulse of the music and the energy of the crowd around you. The beat is infectious and before you know it you are on the dance floor moving your body and having a good time. As the rhythm builds and your hips shake, one thing is holding you back and preventing you from fully enjoying the night. You are just too hot. You left your house looking like a million bucks and now you are a sweaty mess who is one song away from completely melting.

Seconds before you make the decision to escape the crowd and mop up your dripping face, a blast of cold air seemingly from the heavens sweeps across the club and sends a chill through your overheated body. You breathe in deeply and feel refreshed and alive, as you change your mind and stick it out to dance a while longer. You are happy just where you are, looking hot but feeling cool.

The cold blast you felt didn’t come from the heavens, but from a specifically designed and constructed cryogenic system created for the club. A quick blast of liquid nitrogen is all it takes to cool the crowd and have you feeling renewed. This liquid quickly dissipates into a gas, and, because it is denser therefore heavier than air, falls onto the dance floor and the sweaty people below.

Nitrogen is odorless, colorless, and tasteless, making it ideal for going unnoticed (other than a nice cool feeling). These qualities are also what can make it dangerous, because a room could fill with nitrogen without anybody noticing before it is too late. If the right safety precautions, like an oxygen deficiency monitor, are in place, you can party on in confidence. These monitors, like the ones sold by PureAire Monitoring Systems, make sure the oxygen level in the room is at a safe and breathable level, which changes as it is displaced with a heavier gas like nitrogen. If this occurs, an alarm will sound and you will be evacuated before anyone is harmed.

If you are looking for a cool a new experience, try attending a club with a liquid nitrogen system, but always remember, safety first. Check with the club and make sure they are using an oxygen monitor, and if they are not, have them contact PureAire Monitoring Systems to get hooked up.

Contact www.pureairemonitoring.com with any questions

Monday, July 21, 2014

Long Lasting Safety with PureAire Monitoring Systems’ 10+ year sensors

When it comes to oxygen deficiency monitors, PureAire makes the longest lasting units on the market. They believe your safety should not be taken lightly, and have created a reliable and affordable monitor that will outlast all of their competitors. PureAire Monitoring Systems has broken away from the norm of using disposable sensor cells, and has introduced the groundbreaking technology of a 10+ year maintenance free sensor.

Disposable sensor cells have been an international standard in oxygen monitors for decades, but they are far from ideal. They require frequent maintenance and monthly to quarterly calibration, which can be costly. Without calibration, false alarms will occur, or worse, a failure to alarm in the event of oxygen deficiency. The reliability of these disposable sensors can even be affected by changes in barometric pressure.

PureAire Monitoring Systems has come up with a unique product to solve these problems. Their oxygen deficiency monitors include a Zirconium Oxide sensor, which lasts for 10+ years. This sensor is not affected by barometric pressure, and never needs to be recalibrated. This means that it will continue working without flaw toward keeping you safe over many years.


With over 4,000 units in the field, PureAire’s oxygen deficiency monitors continue to gain popularity and support amongst its users. No maintenance means no hassle, and more time to focus on your work while continuing to stay safe.

For more information on the PureAire Oxygen Monitor, contact PureAire Monitoring Systems, Inc., 557 Capital Drive, Lake Zurich, Illinois 60047; phone 888-788-8050, fax 847-726-6051, or contact us via contact form. You may also visit the company’s website at www.PureAireMonitoring.com, and www.MonitorOxygen.com.

About PureAire Monitoring Systems:

PureAire offers an unbeatable combination of innovation and experience in solving safety and environmental needs of their customers. As a manufacturer, they are capable of handling any size project, which includes working with OEMs and distributors.

PureAire’s proprietary sensor cell technology and leading edge electronics are designed to interface with the latest distributive control systems.

Beginning in 1996, their growth has been a result of their total commitment to supporting their customers. PureAire’s goal is to provide the best service and support in the industry. Safety is their number one priority.

Wednesday, May 14, 2014

Oxygen Monitors to be Required in Denver County Regarding Use of Nitrogen, Helium, and Argon

There is no question that working with inert gasses can be a useful but dangerous practice. Ideally, there should be an oxygen deficiency monitor in your facility to make sure the air is safe to breathe in case of a gas leak. If your facility is in Denver County, and you don’t yet have an oxygen monitor, be prepared to purchase one. The Denver Fire Department is currently writing a law that makes O2 monitors mandatory in areas containing inert gasses (Nitrogen, Argon, and Helium).

Inert gasses are also referred to as asphyxiating gasses. This means that as they leak, they deplete the oxygen in the surrounding area, causing people nearby to suffocate. An oxygen deficiency monitor tests the air around the tank, or where the gas is being used, to assure that oxygen is maintained at a breathable level. If the oxygen level drops, an alarm sounds, allowing people to evacuate before they asphyxiate. This danger is why the Denver Fire Department is requiring oxygen monitors around the use of inert gasses. As of April 2014, a draft of the law is awaiting approval and will be implemented in the near future.

Currently in New York City, a law requiring oxygen monitors in the presence of inert or cryogenic gasses is already in place. The Denver law is being modeled after this, requiring a monitor for gas amounts that reach or exceed 100 lbs or 60 gallons. This quantity of gas will also require a permit from the fire department.

In order to comply with this new law, facilities using inert gas will have to seek out an oxygen monitor on their own. PureAire Monitoring Systems makes and sells the best O2 monitor on the market. While other companies’ monitors require yearly maintenance, PureAire’s monitor has a censor that lasts for 10+ years. This means that you can install and go about your business and not need to worry about recalibrating. PureAire has been dedicated to your safety since 1997, and is committed to helping you through this transition.

For more information on the PureAire Oxygen Monitoring System, contact PureAire Monitoring Systems, Inc., 557 Capital Drive, Lake Zurich, IL 60047; phone 888-788-8050 or 847-726-6000; fax 847-726-6051; or email info@pureaire.net. You may also visit the company’s website at www.Pureairemonitoring.com.

Tuesday, March 25, 2014

Cryotherapy is Cool

Cryotherapy is a real facet of medical treatment that uses extremely low temperatures to help with pain and inflammation. Not to be confused with cryopreservation, in cryotherapy the patients are only subjected to the cold for minutes. It seems like something futuristic, but it is actually an increasingly common treatment among athletes to replace ice baths and ice pack therapies.

More specifically, cryogenic chamber therapy, or Whole Body Cryotherapy (WBC), uses liquid nitrogen to cool a chamber to around -185oF. The patient spends a few minutes in the chamber wearing only a bathing suit, socks, gloves and facial protection (to prevent frostbite), allowing the skin temperature to drop while the core body temperature remains stable. This WBC treatment improves many types of muscle and joint pain and helps in the rehabilitation of injuries.

These cryotherapy systems are currently being used by sports teams such as the San Antonio Spurs, the LA Clippers, and the Minnesota Timberwolves, just to name a few. Everyone from Olympians, to rugby players, to non-athletes looking for pain relief utilize WBC. The super cooling power of liquid nitrogen can be a blessing to those in pain, but precautions need to be taken to assure this tricky chemical remains safe. In the event of a liquid nitrogen leak, the patient could suffocate from lack of breathable air. This is why an Oxygen Deficiency Monitor is important to have in any facility that uses liquid nitrogen.

PureAire Monitoring Systems provides a product that would be ideal for this type of application. Their Oxygen Deficiency Monitor that uses a sample draw system is one of the best in the industry, and can be hooked into an alarm or horn and strobe to alert the chamber operator and patients in case of a leak. The oxygen monitor can even be programmed to turn off the nitrogen tanks in the event of a leak in the system.

The O2 monitor would be situated outside the chamber. Through a tube, air samples from inside the chamber would be analyzed to make sure the oxygen level remains at a safe and breathable 20.9%. Any nitrogen leak would reduce the percent of oxygen and trigger an alarm. Because the oxygen deficiency monitor’s sensor lasts at least 10 years without maintenance, safety is guaranteed for many years to come. Cryogenic chamber therapy has the potential to help many people treat their pain, and with the use of an oxygen monitor, they can do so safely.

For more information, please visit our web site at: www.PureAireMonitoring.com, or www.MonitorOxygen.com. If you have any questions, we’d love to speak with you. Call us at: 1-888-788-8050

About PureAire Monitoring Systems, Inc.
PureAire is the industry leader in gas monitoring solutions enabling organizations to ensure safe work environments, minimize compliance risk, and reduce associated costs. Over 1,000 organizations across the globe use PureAire gas monitoring solutions. Beginning in 1996, PureAire’s growth has been a result of an unbeatable combination of innovation and experience in solving safety and environmental needs for customers, as well as a total commitment to supporting the customer 24 hours a day, 7 days a week

Thursday, October 10, 2013

Liquid Nitrogen in Human Oocyte Cryopreservation

The word cryopreservation sounds like something from a science fiction movie. Maybe a man from the past was frozen in time, only to reawaken decades later, unharmed and unaware that he had been frozen at all. Though this scenario seems far-fetched, on a smaller scale, cryopreservation is a commonplace practice in the 21st century. While a grown man cannot be frozen and awoken, the building blocks of man are fair game. Human oocyte cryopreservation, or egg freezing, is a way to freeze and preserve a woman’s eggs. At a later time, these eggs can be thawed and fertilized and used to impregnate the woman. There are many reasons a woman may be a candidate for this procedure. Some of these reasons are age, early menopause, and pre chemotherapy or radiation therapy, which may damage eggs left in the body. In any case, if a woman learns that she will be unable to produce healthy, viable eggs in her future, oocyte cryopreservation is a good option to ensure she has healthy eggs if she decides to try conceiving at a future time. Semen and embryos can also be treated and cryopreserved in a similar way. These specimens can remain frozen for a long period of time. Embryos can be stored for up to 16 years, and semen as long as 22 years. This allows someone who is going through an illness or separation from a spouse to wait until a more viable time for implantation for conception. Most people can easily understand the concept of freezing something to save for later, but the frozen eggs are not stored in your average icebox. Instead, liquid nitrogen freezes the eggs at −321 Fareignheight. This temperature is considered a deep freeze. With the addition of a cryoprotectant to deter ice crystals from forming, the specimens remain in the deep freeze until they are thawed for later use. Amazingly, over 500,000 live human births have been a result of such technologies. There are over 400 facilities nationwide that can provide the oocyte cryopreservation procedure to women in need. On the patients end, the facilities seem like ordinary doctors offices, but the real magic takes place behind closed doors. The scientists and lab technicians use liquid nitrogen to conduct the deep-freezing, which can be very toxic if not used correctly. They rely on oxygen deficiency monitors to detect any lower than average levels of oxygen in the vicinity, which may indicate a nitrogen leak. For the whole sequence to go off without a hitch, the scientists need to remain confident in their safety throughout the process. Pureaire Oxygen Monitoring Systems has created the perfect product to ensure such safety. Their O2 monitor is the best in the industry. The zirconium oxide sensor in the monitor lasts 10+ years with no maintenance or recalibration, making the product last longer than any other. This makes the monitor very cost effective, as it does not require additional purchases on a yearly basis. Also, the monitor’s ability to link to an alarm system, horn and strobe, and exhaust fan help warn people across a facility to evacuate an unsafe area. There is no question that today’s scientific technologies are impressive, yet ever evolving. As a company, Pureaire Oxygen Monitoring Systems vows to support these growing technologies by keeping researchers safe and giving them the confidence to do their job creating families of the future. For more information on the PureAire Oxygen Monitoring System, contact PureAire Monitoring Systems, Inc., 557 Capital Drive, Lake Zurich, IL 60047; phone 888-788-8050 or 847-726-6000; fax 847-726-6051; or email info@pureaire.net. You may also visit the company’s website at www.Pureairemonitoring.com.

Wednesday, January 9, 2013

PureAire Oxygen (O2) Monitor Used in MRI Rooms Around The World

In the early 1980’s, there were 12 Magnetic Resonance Imaging (MRI) machines in use. Today, there are approximately 25,000 around the globe. One item in common is their use of Helium. Liquid Helium is most often associated with party balloons and funny voices, but 20% of the world supply of this super-cooled gas is used in MRI equipment. Liquid helium is extremely cold (-450° F), which is necessary to cool the magnets and get optimum performance from the $3M piece of equipment. One problem with using the gas is that it displaces oxygen, and without oxygen, people and animals suffocate. Look no further than the relatively recent death of a young party-goer who inhaled the gas to make her voice squeaky. Her oxygen levels dropped to a deadly rate. Helium is a nontoxic, odorless, colorless, nonflammable gas stored in cylinders at high pressure. It can cause rapid suffocation when concentrations are sufficient to reduce oxygen levels below 19.5%. It is lighter than air and may collect in high points or along ceilings. Self-Contained Breathing Apparatus (SCBA) may be required by rescue workers.1 If a helium leak occurred in a MRI room, asphyxiation can occur, creating a dangerous environment for both facility workers and patients. For that reason, Oxygen Deficiency monitors are recommended in MRI facilities. PureAire Monitoring Systems Oxygen Monitors are becoming the newest safety product amongst MRI users, thanks to its 10 + year sensor. Unlike its competitors, PureAire’s sensors do not require maintenance or replacement parts and are not impacted by environmental drift. This means no false alarms or failures due to depleted sensors. Further, the “set it and forget it” nature of the solution translates to the lowest cost of ownership in the industry. The PureAire Oxygen Monitor has been used around the world for the last 14 years. The high reliability, low cost and PureAire’s commitment to customer satisfaction make it a customer favorite. “Thanks again for your support. The oxygen monitors are in their respective locations and are functioning as designed. Nice unit! Everyone thinks they are a great product. The software menu is easy to use and could not be easier to operate.” - Dominion Nuclear “The O2 monitors are working well and doing a great job! Alarm relays are configured with the exhaust fan and is triggered a couple of times a day if we have cryogenic bottles in the area. Excellent product, repeatable, and reliable as advertised.” - Gulfstream Aerospace For more information, please visit our web site at: www.PureAireMonitoring.com, or www.MonitorOxygen.com. If you have any questions, we’d love to speak with you. Call us at: 1-888-788-8050 About PureAire Monitoring Systems, Inc. PureAire is the industry leader in gas monitoring solutions enabling organizations to ensure safe work environments, minimize compliance risk, and reduce associated costs. Over 1,000 organizations across the globe use PureAire gas monitoring solutions. Beginning in 1996, PureAire’s growth has been a result of an unbeatable combination of innovation and experience in solving safety and environmental needs for customers, as well as a total commitment to supporting the customer 24 hours a day, 7 days a week 1) Air Products. (1997). MATERIAL SAFETY DATA SHEET. http://avogadro.chem.iastate.edu/MSDS/helium.pdf

Thursday, October 4, 2012

Hypoxico Selects PureAire Oxygen Deficiency Monitors…Again

Lake Zurich, IL and New York, NY, October 1, 2012 - Hypoxico (www.hypoxico.com), the world leader in altitude simulation, has once again selected PureAire Monitoring Systems’ (www.pureairemonitoring.com) Oxygen Deficiency Monitor to meet its customer’s needs for safety and accuracy. Since 2006 PureAire Monitoring Systems O2 Monitors have been used in Hypoxic High Altitude Training rooms. The use of high altitude training rooms continues to rise among athletes looking for a more effective workout. The philosophy behind this trend is to lower the breathable oxygen to emulate training at higher altitudes, making for a more strenuous workout. Some clients reported to use these altitude training systems include Prince Harry, Lance Armstrong, David Beckham, Cleveland Indians, Bear Grylls, and Michael Phelps. The training system may include high altitude “sleeping tents”. Many other athletes and organizations use altitude training as part of their exercise routine. PureAire’s Oxygen Deficiency monitor uses a zirconium oxide sensor. The end result is a monitor that does not require maintenance or calibration and is not subject to environmental “drift”. For these reasons, PureAire has been specified as the best fit for Hypoxico’s altitude solutions. The sensor life expectancy is 10+ years. In addition, the sensors provide complete linearity across the full scale of 0-25% giving an almost analyzer quality for the athletes. Gary Kotliar, President, Hypoxico, Inc. - “Prior to selecting PureAire, we were plagued with monitors that required regular calibration, replacement, and repair. We evaluated multiple solutions and chose PureAire as the only monitor that met our customer’s requirements for a no maintenance solution that delivered quality, accuracy, and low cost. PureAire’s commitment to customer service is icing on the cake.” Al Carrino, President, PureAire Monitoring Systems - “We are pleased to continue our partnership with Hypoxico. As the leader in altitude simulation, it is important they continue to deliver value to their customers in the form of an industry leading solution that includes a high quality monitoring system that is easy to own and offers the lowest total cost of ownership. We are excited to be part of this growing market.” About Hypoxico, Inc. Hypoxico is the leading provider of high altitude training solutions to both individuals and organizations around the globe. Hypoxico offers the highest quality products geared toward the three most effective methods of altitude training, • "Live High, Train Low" • Altitude Workouts • Intermittent Hypoxic Training (IHT) The proven benefit of altitude training includes maximized speed and endurance, elevated strength and power, and enhanced energy levels and overall wellness. For more information, visit www.hypoxico.com About PureAire Monitoring Systems, Inc. PureAire is the industry leader in gas monitoring solutions enabling organizations to ensure safe work environments, minimize compliance risk, and reduce associated costs. Over 1,000 organizations across the globe use PureAire gas monitoring solutions. Beginning in 1996, PureAire’s growth has been a result of an unbeatable combination of innovation and experience in solving safety and environmental needs for customers, as well as a total commitment to supporting the customer 24 hours a day, 7 days a week. For more information, visit www.pureairemonitoring.com.