Monday, March 16, 2020

What Is Up With Helium


Helium is the second most abundant element in the universe and used across a variety of industries. Valued for more than simply filling party balloons, helium is of critical importance in many commercial applications, including high-tech, automotive, healthcare, and aerospace.

Helium Uses
For instance, the manufacture of fiber optics requires an all-helium environment to prevent air bubbles or other flaws in the delicate fibers used in cables to transmit data. Additionally, the semiconductor industry utilizes the cooling properties of helium to transfer heat away from computer chips during manufacturing.

Helium plays a key role in inflating automobile airbags and may also be used to detect leaks in car air-conditioning systems. Metal fabricators use helium for welding because of its inert properties and high heat transfer capabilities, which make it the perfect shielding gas (an inert or semi-inert gas that protects the weld from oxygen and water) for welding materials with high heat conductivity, such as copper, magnesium alloys, and aluminum.

In the medical field, helium is used to cool the superconducting magnets in MRI (magnetic resonance imaging) and NMR (nuclear magnetic resonance) equipment, to treat medical conditions such as asthma and emphysema, andfor laparoscopic surgery.

NASA uses helium as an inert purge gas for hydrogen systems and as a pressurizing agent for ground and flight fluid systems, as well as a cryogenic agent for cooling various materials. Moreover, as in the automotive sector, helium is likewise used in precision welding applications in aerospace manufacturing.

Staying Safe While Working with Helium
Since helium is odorless and colorless, it has no early warning properties. Helium can displace oxygen in the air to levels below what is needed for humans to breathe. Exposure to helium can cause dizziness, nausea, and loss of consciousness. Absent proper oxygen monitoring, unconsciousness, and even death may occur in seconds. The National Institutes for Health recommends installing oxygen monitors anywhere compressed gases, such as helium, are stored or used.

PureAire Monitors
PureAire Monitoring Systems’ oxygen deficiency monitors continuously track levels of oxygen and will detect helium leaks before the health of employees is put at risk. Built with zirconium oxide sensor cells, to ensure longevity, PureAire’s O2 deficiency monitors can last, trouble-free, for over 10 years under normal operating conditions. In the event of a helium gas leak, and a decrease in oxygen to an unsafe, OSHA action level, the monitor will set off an alarm, replete with horns and flashing lights, alerting staff and users to evacuate the area.

Each PureAire O2 monitor has an easy to read screen, which displays current oxygen levels, for at-a-glance readings by employees, who derive peace of mind from the monitor’s presence and reliability.

Wednesday, November 20, 2019

Fast, Frozen, Convenience-Tunnel Freezers


Frozen foods first became commercially viable in the 1930s, thanks in large part to Clarence Birdseye. He is credited with inventing the double-belt freezer, the forerunner to modern quick-freeze technology, which includes the tunnel freezers used by most major food processors in North America.

Frozen foods offer many benefits to today’s busy consumers, including convenience; minimal processing, with few to no preservatives; a long spoilage-free product shelf life; and, especially when compared with canned foods, superior taste, since the ingredients are quick-frozen at their peak of freshness. Seasonal foods, such as fruits and vegetables, are, once they have been frozen, now available year-round. In the same way, people living in landlocked locations can enjoy fresh-frozen seafood, no matter the distance from the coast. And, through the near magic of quick-frozen partially baked bread products, we can consume bakery-quality goods at home, straight out of the ovens in our own kitchens.

Still, even as Mr. Birdseye’s invention made frozen foods available to mass consumers in the first place nearly a century ago, so, too, have more recent innovations in freezing technology, including new freezer types, such as tunnel freezers using cryogenic gases, greatly improved the quality and, therefore, the market acceptance, of frozen foods. These freezers very quickly “flash freeze” foods at extremely low temperatures, such that the foods maintain essentially all of their original freshness, flavor, and texture.

How Tunnel Freezers Work

Tunnel freezers work by rapidly freezing food using cryogenic gases, such as liquid nitrogen (LN2) or carbon dioxide (CO2). The fresh food items are placed on a conveyor belt, which carries them into the freezer, where an injection system (utilizing either liquid nitrogen or carbon dioxide), together with fans circulating the gas-chilled air, ensure that all food surfaces are quickly and evenly frozen.

Food products frozen in cryogenic tunnel freezers, including all manner of proteins, fruits, vegetables, and parbaked bread and dough items, are ultimately shipped to grocery chains and warehouse superstores; operators of quick service, fast casual, and fine dining restaurants; and school and hospital cafeterias, among other places, and they are enjoyed daily by millions of hungry people.

Monitoring Can Protect Food Processing Employees

While the use of liquid nitrogen and/or carbon dioxide is essential in that part of the quick-frozen food processing industry using tunnel freezer technology, it is not without risk. LN2 and CO2 are both oxygen-depleting gases, and oxygen deprivation could put employees in real danger if there are gas leaks from freezer supply lines or exhaust systems, or from on-site gas storage containers. In the event of a leak, plant personnel could become disoriented, lose consciousness, or even suffocate from breathing oxygen-deficient air. Since liquid nitrogen and carbon dioxide are both colorless and odorless, workers would, in the absence of appropriate monitoring, have no way of knowing that there has in fact been a gas leak.

PureAire Water-Resistant Dual O2/CO2 Monitors 

PureAire Monitoring Systems’ water-resistant dual oxygen/carbon dioxide monitors offer thorough air monitoring, with no time-consuming maintenance or calibration required. A screen displays current oxygen and carbon dioxide levels for at-a-glance reading by employees, who derive peace of mind from the monitor’s presence and reliable performance.




In the event of a nitrogen or carbon dioxide leak, and a decrease in oxygen to an unsafe level, the monitor will set off an alarm, complete with horns and flashing lights, alerting personnel to evacuate the area.

PureAire’s dual oxygen/carbon dioxide monitor is housed in an IP67 water resistant enclosure that will keep the electronics dry during wash-downs and will remain accurate at extremely low temperatures.That makes the monitor ideally suited for facilities using liquid nitrogen or carbon dioxide, such as frozen food processing plants with tunnel freezers. Built with zirconium oxide sensor cells and non-dispersive infrared sensor (NDIR)cells to ensure longevity, PureAire’s dual O2/CO2 monitors can last, trouble-free, for over 10 years under normal operating conditions.



Tuesday, July 30, 2019

Gas Detectors Can Ensure Chlorine Safety in Swimming Pools


In April 2019, six people became sick after being exposed to chlorine gas at a hotel pool in India, because one of the chlorine gas cylinders, which had been stored improperly, began to leak, exposing swimmers to chlorine gas.  In June 2019, some 50 pool patrons became ill after a pump malfunction leaked chlorine gas at an indoor pool in Utah. These are not isolated events.  According to the Centers for Disease Control and Prevention, exposure and inhalation of pool chemicals, including chlorine fumes and gases, account for approximately 4,500 emergency room visits each year.
Accidental exposure to chlorine gas, such as the incidents in Utah and India, can cause individuals to have trouble in breathing, burning sensation in the nose, throat, and eyes, as well as blurred vision, coughing, chest tightness, nausea, and vomiting
Learn how to keep swimmers and employees safe at your facility.

Chlorine Treatment

Chlorine, a powerful, corrosive disinfectant, is used in pools and hot tubs to kill harmful bacteria and prevent waterborne outbreaks such as Cryptosporidium (a parasite that causes diarrhea) andLegionella (the bacteria that can cause Legionnaires’ disease), in addition to swimmer’s ear and “hot tub rash”. Contrary to popular belief, while chlorine does have a distinct odor, an overwhelmingly strong scent of chlorine can actually indicate that not enough chlorine is being used.
As chlorine mixes with unwanted substances in the water, such as urine, and sweat, chloramines are produced. Chloramines result from the ammonia in urine and sweat reacting to chlorine. It is chloramine that causes the condition known to swimmers as “red eye”.

Protection Against Accidental Chlorine Gas Leaks

While chlorine is essential to keep pools crystal clear and sanitary, it must be carefully monitored, and pool equipment rooms properly maintained, with appropriate safety equipment.
According to the California Association of Environmental Health Administrators, every public indoor swimming pool and spa should have an audible and visible chlorine detection alarm system located in the room containing chlorine gas equipment. The gas detection system shall continuously monitor the room and, if chlorine concentrations exceed the permissible exposure limit of 0.5ppm, activate an alarm, turn off the chlorine at the source, and turn on the ventilation system.Ideally, the monitoring system will have an audible alarm that is at least 90 decibels and have visible strobe lights.

PureAire Monitors

PureAire Monitoring Systems’ universal gas detectors use “smart” sensor cells technology to continuously track levels of ammonia, bromine, hydrogen, hydrogen chloride, and other toxic gases, including chlorine. The sensor cell is programmed to monitor for a specific gas and measurement range, as required by the user.

Indoor pool facilities using a PureAire universal gas detector can detect elevated chlorine levels before the health of pool staff or patrons is put at risk.  In the event of a chlorine leak, and the elevation of chlorine to an unsafe level, the gas detector will set off an alarm that includes horns and flashing lights, and turn on the ventilation system, alerting pool staff and swimmers to evacuate the area.
An easy to read screen makes it simple for pool staff members to monitor chlorine levels at a glance, giving them peace of mind.


Friday, July 19, 2019

Cryotherapy - Baby It’s Cold Inside


Cryotherapy
Cryotherapy (also known as cold therapy) is broadly defined as the use of very cold temperatures for medical or general wellness purposes.  Modern cryotherapy (which comes from the Greek kyro, meaning “cold” and therapeia,  meaning “healing”) can be traced back thousands of years, and some form of it was practiced by the ancient Greeks, Romans, and Egyptians, among other civilizations, which used extreme cold therapy to treat injuries and reduce inflammation.

In 1978, a Japanese rheumatologist, Toshima Yamaguchi, developed what is known as Whole Body Cryotherapy (“WBC”), in which, cryotherapy is applied to the entire body; that is, the whole body, except the head, is exposed to extremely cold temperatures. Dr. Yamaguchi’s research found that rapid temperature decreases on the outer layers of individuals’ skin led to a rapid release of endorphins, which caused those individuals to become less sensitive to pain. To put his findings into practice, Dr. Yamaguchi and his associates built the world’s first cryochamber.

How Whole Body Cryotherapy Works

Whole body cryotherapy involves enclosing the entire body (excepting the head) in a cryochamber, with liquid nitrogen used to quickly chill the chamber to temperatures between -200 and -300 degrees Fahrenheit for a period not longer that 2-4 minutes. The extremely rapid cooling of the body causes blood flow to concentrate towards the body’s core, and away from the extremities, which, in concept, can reduce inflammation relating to soft tissue injuries.  At the same time, the body releases endorphins, which serve to decrease pain and increase feelings of euphoria.

Health Benefits Attributed to Whole Body Cryotherapy

Whole body cryotherapy is used to treat patients suffering from chronic inflammatory conditions, as well as, Olympic and other elite athletes experiencing muscle soreness, and to shorten recovery times from injuries and surgeries.

Cryotherapy is used to treat joint pain and inflammation due to arthritis and fibromyalgia, and for pain management, physical therapy, anti-aging, and weight loss treatments.

Oxygen Monitors Can Protect Cryochamber Workers and Users

In 2015, a cryotherapy facility employee in Las Vegas was found dead after she suffocated in a chamber.  The coroner’s office concluded that the death was caused by accidental asphyxiation, resulting from low oxygen levels, possibly resulting from a leak of the nitrogen gas used to rapidly chill the cryochamber. Nitrogen is an oxygen-depleting gas that is both odorless and colorless. Oxygen deprivation is called a silent killer because there are no indications that one is breathing oxygen deficient air until it is too late. As such, absent appropriate monitoring, workers would be unable to detect a nitrogen leak if one were to occur in a gas cylinder or line. Conversely, by utilizing a top-quality oxygen monitor, also known as an oxygen deficiency monitor, cryochamber personnel can track oxygen levels and detect leaks before a workers’ and users’ health is jeopardized.

PureAire Monitors


PureAire Monitoring Systems’ oxygen monitors continuously track levels of oxygen and will detect nitrogen leaks before the health of cryochamber operators or users is put at risk. Built with zirconium oxide sensor cells, to ensure longevity, PureAire’s O2 monitors can last, trouble-free, for over 10 years under normal operating conditions.  In the event of a nitrogen gas leak, and a decrease in oxygen to an unsafe level, the monitor will set off an alarm, replete with horns and flashing lights, alerting staff and users to evacuate the area.

Best practice calls for oxygen monitors to be installed anywhere there is a risk of gas leaks. The oxygen monitors should be placed wherever nitrogen is stored and, in all rooms where nitrogen is used.

PureAire oxygen monitors measure oxygen 24/7, with no time-consuming maintenance or calibration required.

Each PureAire O2 monitor has an easy to read screen, which displays current oxygen levels, for at-a-glance readings by cryochamber employees, who derive peace of mind from the monitor’s presence and reliability.

Tuesday, June 25, 2019

Freeze-Dried Food…Dogs Eat It Up

Overview

As dog owners, we treat our pets as we do our children, taking care that the food we give them is not only filling and nutritious but contains only high-quality ingredients sourced and processed in ways that meet our exacting standards.

For many owners, far in the past are the days of grabbing any old bag of kibble off the shelf and feeding it to Fido or Ginger. Dog owners today are making informed choices in their purchases of pet food, such as whether the ingredients are all-natural or organic, whether they contain allergens to be avoided, which proteins predominate in the mix, etc. Not only are owners increasingly educated about what goes into their dogs’ food, they are faced with many choices when it comes to exactly what form the food will take.

Types of Dog Food

Major pet food types available to contemporary dog owners, from a wide array of manufacturers, include dry food, semi-moist, canned, raw, and freeze-dried food.
Dry food, commonly known as kibble, is the most prevalent type of dog food on the market. Semi-moist food is served either on its own or added to kibble for a variety of tastes and textures. Canned food is a moist product with a long shelf life. Raw food appeals to owners who believe that an uncooked all-meat diet is closer to what dogs would have eaten in the wild, before they became domesticated. Raw foods may be produced and sold as either fresh, fresh frozen, or freeze-dried.

Freeze-Dried Dog Food

The freeze-dried dog food segment--including 100% freeze-dried meals, so-called “kibble+” (dry kibble mixed with freeze-dried components), and freeze-dried treats, such as beef liver and other types of training tidbits--currently commands only a niche share of the ~$30 Billion U.S. dog food industry, but it is rapidly growing in popularity among owners seeking, as in their own diets, to avoid highly processed foods.

Purchasing freeze-dried proteins, whether cooked or raw, as well as fruits and vegetables (which are typically freeze-dried in a raw state), allows owners to provide their pets with minimally processed, nutrient-rich, natural foods. Freeze-drying quality ingredients makes for an easily transportable, shelf-stable tasty food that does not require refrigeration.

Gas Usage in Freeze-Dried Food Processing and Packaging

Food safety is as important in the pet food industry as it is in the manufacturing and distribution of human-grade foodstuffs.  Proper temperatures must be maintained in order to prevent mold and bacteria growth resulting from, among other things, improper cooking and cooling temperatures, as well as insufficient or excessive moisture.

Quality control and safety concerns dictate that, because of their rapid cooling and freezing properties, liquid nitrogen (LN2) and liquid carbon dioxide (liquid CO2) be used in pet food production to uniformly cool proteins after cooking, and to freeze them as part of the freeze-drying process. Once properly chilled, the proteins and other ingredients that go into a freeze-dried dog food product are quickly frozen in blast freezers using LN2 or liquid CO2.  After freezing, they are placed into vacuum drying chambers for some 12 hours, until the drying process is complete (i.e., essentially all moisture has been removed), following which the food is ready for packaging.

To prolong dog food shelf life (by inhibiting the growth of mold and bacteria which thrive in oxygenated environments), nitrogen is injected to displace oxygen from the product packaging.The addition of nitrogen during the packaging phase also provides a cushion to protect the contents from settling and breakage that can occur during shipping and handling.

Oxygen Monitors Can Improve Safety in Pet Food Manufacturing and Packaging

While their use is essential in the production of freeze-dried dog food, nitrogen and carbon dioxide can pose health risks (including death by asphyxiation) to employees working in the industry. Nitrogen and carbon dioxide are both odorless and colorless, and they displace oxygen. Absent appropriate monitoring, workers would be unable to detect a leak if one were to occur in a gas cylinder or line. Conversely, by utilizing a top-quality oxygen monitor, safety and production personnel can track oxygen levels and detect leaks before workers’ health is jeopardized.


PureAire Monitors

With PureAire Monitoring Systems’ dual oxygen/carbon dioxide monitor, pet food producers can track levels of oxygen and detect nitrogen or carbon dioxide leaks before workers’ health is at risk. PureAire’s O2/CO2 monitor measures oxygen and carbon dioxide 24/7, with no time-consuming maintenance or calibration required. PureAire’s monitors can handle temperatures as low as -40C, making them ideally suited for environments, such as pet food processing plants, that use liquid nitrogen and carbon dioxide.

Built with zirconium oxide sensor cells and non-dispersive infrared sensor (NDIR) cells, to ensure longevity, PureAire’s O2/CO2 monitors can last, trouble-free, for over 10 years under normal operation conditions.


Thursday, June 13, 2019

Alternative Fuels - A Look At the Current Environment



Overview

Vehicles powered by gasoline and diesel account for emissions of dangerous air pollutants and contribute to the presence of greenhouse gases. Consumers, businesses, and public entities looking for environmentally friendly alternatives to gasoline and diesel-powered cars and trucks have viable choices beyond the well-known battery electric and plug-in hybrid electric variants.  Other options in use today include vehicles powered by natural gas, as well as, on a more limited basis, those powered by hydrogen fuel cells.

Natural Gas Vehicles

Natural gas can be used to power all classes of vehicles, including motorcycles, cars, vans, public transit buses, light and heavy-duty trucks, etc.  Most natural gas vehicles (NGVs) run on either compressed natural gas (CNG), which is typically used for light-duty vehicles (such as motorcycles, cars, taxi cabs, and light trucks), or liquified natural gas (LNG), used in heavy-duty vehicle applications (including public buses, garbage trucks, and the like).

CNG vehicles store natural gas in tanks, where the fuel remains in a gaseous state. Vehicles using LNG can typically hold more fuel than those using CNG, because the fuel is stored as a liquid, making its energy density greater than that of CNG. That makes LNG well-suited for heavy duty commercial trucks requiring the greatest possible driving range. Regardless, because of the lower density of natural gas (whether CNG or LNG), the driving range of NGVs is generally less than that of comparable vehicles powered by gasoline or diesel.

As such, and excluding the commercial and municipal fleet sectors, where fuel sources can be assured, confidence in ability to timely access refueling stations must be a concern for drivers (or potential drivers) of NGVs.

The first vehicles converted to utilize natural gas appeared in the late 1930s, though most of the rapid growth in NGV usage has taken place in recent years. According to the Natural Gas Vehicle Knowledge Base, there are over 27 million NGVs currently on the road worldwide (compared with as few as 1 million as recently as 2000), with over 70% of the present total in the Asia-Pacific region (and only about 225 thousand in North America as of 4/30/2019).

In addition to the reduction in greenhouse gas emissions inherent in choosing natural gas over conventional gasoline and diesel fuels, some businesses and municipalities seeking to meaningfully reduce reliance on fossil fuels are going even further, by focusing on renewable natural gas (RNG), including gas derived from decaying garbage, to power vehicles subject to their authorities.  Indeed, in May 2019, the City of Seattle, Washington announced that the trash truck fleet servicing Seattle will now include some 91 Waste Management vehicles powered by RNG generated by decaying trash from U.S. landfills.

Hydrogen Fuel Cell Vehicles

Importantly for the environment, hydrogen fuel cell electric vehicles (FCEVs) produce no tailpipe emissions.  Fuel cell technology has been around since at least the late 1950s, when Allis-Chalmers tested an FCEV farm tractor, followed some years later by GM’s prototype hydrogen FCEV Electrovan in 1966.  FCEVs use a propulsion system whereby energy, stored as pure hydrogen gas, is converted to electricity by a fuel cell.

Initially, the fuel cells and associated piping were quite bulky (reducing the 6-seat GM Electrovan from a 6-seat van to a 2-seater that could barely accommodate 2 adult passengers), heavy (reducing range and acceleration, such that the Electrovan, which was never produced for sale, had a top speed and range of  only about 70 mph and 120 miles, respectively), and too expensive to mass produce.  As a result, meaningful FCEV production has lagged until well into the 21st century, when technological innovations have at last begun to make it possible for the FCEV concept to become a functioning reality.

Though FCEVs, and the hydrogen fueling infrastructure (i.e., stations equipped to pump hydrogen gas) necessary to support them, remain in a relatively early stage of development, certain major automobile manufacturers (including Honda, Hyundai, Toyota) are now offering a limited number of FCEVs to the public in certain markets (chiefly within California) where hydrogen refueling infrastructure is already in place, and passenger FCEVs currently in service now have a driving range between refueling of some 300 miles.

However, until retail refueling infrastructure shows a marked increase, most of the anticipated growth in hydrogen FCEV usage is likely to come from the municipal and commercial fleet sectors. By way of example, Toyota and Kenworth have recently announced development of a 10-vehicle zero emissions heavy-duty FCEV truck fleet to be put into service at the Port of Los Angeles.

Refueling and Maintaining Alternative Fuel Vehicles

While far fewer in number, refueling stations and equipment for vehicles powered by natural gas (approximately 1,900 service stations in North America) and hydrogen (no more than 50 service stations in North America, mostly in California, can accommodate hydrogen FCEVs) are similar in appearance to conventional gas stations and pumps, with large tanks from which drivers pump into their vehicles either natural gas, on the one hand, or hydrogen on the other.

According to the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy, proper maintenance of NGVs requires that the fuel storage tanks be inspected regularly, following accidents, or when there has been suspected damage.  NGV users must also be aware of end-of-life dates of their tanks, so that the tanks can be properly decommissioned as and when appropriate. Moreover, fuel filters should be inspected and, if necessary, replaced on a yearly basis.

Hydrogen FCEVs are maintained in much the same way as any other electric vehicle, including scheduled maintenance, and, if necessary, replacement of electric components and suspension parts. For a major overhaul, a vehicle will need to be serviced at a so-called “hardened shop”, at which there are specific requirements, including the presence of combustible gas monitors, curtains around the work area, and explosion-proof lighting fixtures.

Gas Detection Monitors Can Improve Safety in Alternative Fuels Servicing Facilities


Natural gas is odorless, colorless, and highly combustible. However, an odorant is normally added to natural gas to alert users if there is a leak.  If a natural gas leak occurs indoors, the gas is likely to rise and remain at ceiling level until ventilated outside.

To detect, and protect against the risks of, natural gas leaks, the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy recommends placing combustible gas detection monitors, containing visual and audible alarms, at the highest point (i.e., ceiling level) in natural gas fueling stations and repair facilities.

Hydrogen is also highly combustible, as well as odorless and colorless, making leaks undetectable (and dangerous), absent appropriate monitoring. Because hydrogen gas is light, it may disperse relatively quickly if a leak occurs outdoors, but if a leak occurs inside a building, the gas will, much like natural gas, rise to ceiling height, where it will remain until ventilated outside.

The International Fire Code and the National Fire Protection Association have set out requirements mandating the use of hydrogen sensors in hydrogen fueling stations and repair facilities.
Ideally, if there is a leak (whether of natural gas or hydrogen gas) in a facility, the combustible gas detection monitors should automatically activate that building’s ventilation system.

PureAireMonitors

PureAire Monitoring Systems’Combustible Gas Monitor (LEL) offers continuous readings of hydrogen, compressed, and liquified natural gas. In the event of a leak or buildup of gas to an unsafe level, the monitor will set off the alarm, replete with horns, flashing lights, and turn on the ventilation system.

PureAire’s Combustible GasMonitor (LEL) is housed in a NEMA 4 explosion proof enclosure suitable for Class1, groups B, C, D.

Friday, May 17, 2019

3D Printed Auto Parts—The Future Is Now


Overview

3D printing (also known as “additive manufacturing”) affords manufacturers the ability to create custom parts that fit together perfectly.  Utilized for decades in the medical products and aerospace parts industries, 3D printing is increasingly being used in other industries as well, including the relatively recent advent of 3D printed metal auto parts.

 New and Replacement Auto Parts

Automakers have made use of 3D printing processes since the late 1980s, with the initial output comprised primarily of plastic parts.  Manufacturers such as Ford, BMW, Bugatti, Chrysler, Honda, Toyota, among others, have embraced 3D printing in their research and development efforts, including the production of working prototypes.  While the automobile industry is currently unable to mass produce an all 3D printed vehicle, carmakers are already producing 3D printed parts, with the eventual goal, as soon as is feasible, of more fully integrating 3D printed parts into the original manufacture of future generations of automobiles.

Availing themselves of 3D printing processes for producing auto parts allows manufacturers to generate parts that are lightweight (which can improve fuel efficiency) and customizable, and that can be created quickly, enhancing the lean manufacturing focus on just in time inventory.  Although plastic has traditionally been the material most often used in printing parts, as advances in additive manufacturing have been made, so too has the use of alternative materials.

For instance, in 2018, French luxury automaker Bugatti announced that it had developed a new 3D printed titanium brake caliper prototype which, it claimed, was the largest functional titanium component produced with a 3D printer.  DS Automobiles, Citroen premium brand, has created 3D titanium printed parts for the ignition elements, as well as 3D printed titanium door handles, to give their DS 3 Dark Side edition vehicle a sleek, high tech feel.

Gas Usage In 3D Printing Process

To prevent corrosion, and to keep out impurities that can negatively impact the final product, 3D printed parts must be produced in an environment made free of oxygen, typically by the use of argon (and sometimes nitrogen) within the building chamber. That creates a stable printing environment, prevents fire hazards by keeping combustible dust inert, and controls thermal stress in order to reduce deformities.

Oxygen Monitors Can Improve Safety in Additive Manufacturing Processes

Dust from materials used in additive manufacturing, such as titanium, is, when exposed to oxygen, highly combustible and, therefore, requires monitoring to prevent possible explosions.Argon and nitrogen, while used in 3D printing for their oxygen depleting properties, require monitoring to ensure both the integrity of the finished part, and the safety of manufacturing personnel.

PureAire Monitors 

For quality control purposes, PureAire Monitoring Systems’ Air Check O2 0-1000ppm monitor has a remote sensor that can be placed directly within the printing build chamber, to continuously monitor the efficiency and purity of the O2 depleting gases (e.g. argon and nitrogen) used therein.



Moreover, to ensure employee safety, PureAire’s Oxygen Deficiency Monitors should be placed anywhere argon and nitrogen supply lines and storage tanks are located. In the event of an argon or nitrogen leak, a drop in oxygen will cause the built-in horn to sound and the lights to flash, thereby alerting employees to evacuate the area.  PureAire’s Oxygen Deficiency Monitors measure oxygen 24/7, with no time-consuming maintenance required. PureAire’s monitors feature long-lasting zirconium sensors, which are designed to give accurate readings, without calibration, for up to 10 years.