Tuesday, June 25, 2019

Freeze-Dried Food…Dogs Eat It Up

Overview

As dog owners, we treat our pets as we do our children, taking care that the food we give them is not only filling and nutritious but contains only high-quality ingredients sourced and processed in ways that meet our exacting standards.

For many owners, far in the past are the days of grabbing any old bag of kibble off the shelf and feeding it to Fido or Ginger. Dog owners today are making informed choices in their purchases of pet food, such as whether the ingredients are all-natural or organic, whether they contain allergens to be avoided, which proteins predominate in the mix, etc. Not only are owners increasingly educated about what goes into their dogs’ food, they are faced with many choices when it comes to exactly what form the food will take.

Types of Dog Food

Major pet food types available to contemporary dog owners, from a wide array of manufacturers, include dry food, semi-moist, canned, raw, and freeze-dried food.
Dry food, commonly known as kibble, is the most prevalent type of dog food on the market. Semi-moist food is served either on its own or added to kibble for a variety of tastes and textures. Canned food is a moist product with a long shelf life. Raw food appeals to owners who believe that an uncooked all-meat diet is closer to what dogs would have eaten in the wild, before they became domesticated. Raw foods may be produced and sold as either fresh, fresh frozen, or freeze-dried.

Freeze-Dried Dog Food

The freeze-dried dog food segment--including 100% freeze-dried meals, so-called “kibble+” (dry kibble mixed with freeze-dried components), and freeze-dried treats, such as beef liver and other types of training tidbits--currently commands only a niche share of the ~$30 Billion U.S. dog food industry, but it is rapidly growing in popularity among owners seeking, as in their own diets, to avoid highly processed foods.

Purchasing freeze-dried proteins, whether cooked or raw, as well as fruits and vegetables (which are typically freeze-dried in a raw state), allows owners to provide their pets with minimally processed, nutrient-rich, natural foods. Freeze-drying quality ingredients makes for an easily transportable, shelf-stable tasty food that does not require refrigeration.

Gas Usage in Freeze-Dried Food Processing and Packaging

Food safety is as important in the pet food industry as it is in the manufacturing and distribution of human-grade foodstuffs.  Proper temperatures must be maintained in order to prevent mold and bacteria growth resulting from, among other things, improper cooking and cooling temperatures, as well as insufficient or excessive moisture.

Quality control and safety concerns dictate that, because of their rapid cooling and freezing properties, liquid nitrogen (LN2) and liquid carbon dioxide (liquid CO2) be used in pet food production to uniformly cool proteins after cooking, and to freeze them as part of the freeze-drying process. Once properly chilled, the proteins and other ingredients that go into a freeze-dried dog food product are quickly frozen in blast freezers using LN2 or liquid CO2.  After freezing, they are placed into vacuum drying chambers for some 12 hours, until the drying process is complete (i.e., essentially all moisture has been removed), following which the food is ready for packaging.

To prolong dog food shelf life (by inhibiting the growth of mold and bacteria which thrive in oxygenated environments), nitrogen is injected to displace oxygen from the product packaging.The addition of nitrogen during the packaging phase also provides a cushion to protect the contents from settling and breakage that can occur during shipping and handling.

Oxygen Monitors Can Improve Safety in Pet Food Manufacturing and Packaging

While their use is essential in the production of freeze-dried dog food, nitrogen and carbon dioxide can pose health risks (including death by asphyxiation) to employees working in the industry. Nitrogen and carbon dioxide are both odorless and colorless, and they displace oxygen. Absent appropriate monitoring, workers would be unable to detect a leak if one were to occur in a gas cylinder or line. Conversely, by utilizing a top-quality oxygen monitor, safety and production personnel can track oxygen levels and detect leaks before workers’ health is jeopardized.


PureAire Monitors

With PureAire Monitoring Systems’ dual oxygen/carbon dioxide monitor, pet food producers can track levels of oxygen and detect nitrogen or carbon dioxide leaks before workers’ health is at risk. PureAire’s O2/CO2 monitor measures oxygen and carbon dioxide 24/7, with no time-consuming maintenance or calibration required. PureAire’s monitors can handle temperatures as low as -40C, making them ideally suited for environments, such as pet food processing plants, that use liquid nitrogen and carbon dioxide.

Built with zirconium oxide sensor cells and non-dispersive infrared sensor (NDIR) cells, to ensure longevity, PureAire’s O2/CO2 monitors can last, trouble-free, for over 10 years under normal operation conditions.


Thursday, June 13, 2019

Alternative Fuels - A Look At the Current Environment



Overview

Vehicles powered by gasoline and diesel account for emissions of dangerous air pollutants and contribute to the presence of greenhouse gases. Consumers, businesses, and public entities looking for environmentally friendly alternatives to gasoline and diesel-powered cars and trucks have viable choices beyond the well-known battery electric and plug-in hybrid electric variants.  Other options in use today include vehicles powered by natural gas, as well as, on a more limited basis, those powered by hydrogen fuel cells.

Natural Gas Vehicles

Natural gas can be used to power all classes of vehicles, including motorcycles, cars, vans, public transit buses, light and heavy-duty trucks, etc.  Most natural gas vehicles (NGVs) run on either compressed natural gas (CNG), which is typically used for light-duty vehicles (such as motorcycles, cars, taxi cabs, and light trucks), or liquified natural gas (LNG), used in heavy-duty vehicle applications (including public buses, garbage trucks, and the like).

CNG vehicles store natural gas in tanks, where the fuel remains in a gaseous state. Vehicles using LNG can typically hold more fuel than those using CNG, because the fuel is stored as a liquid, making its energy density greater than that of CNG. That makes LNG well-suited for heavy duty commercial trucks requiring the greatest possible driving range. Regardless, because of the lower density of natural gas (whether CNG or LNG), the driving range of NGVs is generally less than that of comparable vehicles powered by gasoline or diesel.

As such, and excluding the commercial and municipal fleet sectors, where fuel sources can be assured, confidence in ability to timely access refueling stations must be a concern for drivers (or potential drivers) of NGVs.

The first vehicles converted to utilize natural gas appeared in the late 1930s, though most of the rapid growth in NGV usage has taken place in recent years. According to the Natural Gas Vehicle Knowledge Base, there are over 27 million NGVs currently on the road worldwide (compared with as few as 1 million as recently as 2000), with over 70% of the present total in the Asia-Pacific region (and only about 225 thousand in North America as of 4/30/2019).

In addition to the reduction in greenhouse gas emissions inherent in choosing natural gas over conventional gasoline and diesel fuels, some businesses and municipalities seeking to meaningfully reduce reliance on fossil fuels are going even further, by focusing on renewable natural gas (RNG), including gas derived from decaying garbage, to power vehicles subject to their authorities.  Indeed, in May 2019, the City of Seattle, Washington announced that the trash truck fleet servicing Seattle will now include some 91 Waste Management vehicles powered by RNG generated by decaying trash from U.S. landfills.

Hydrogen Fuel Cell Vehicles

Importantly for the environment, hydrogen fuel cell electric vehicles (FCEVs) produce no tailpipe emissions.  Fuel cell technology has been around since at least the late 1950s, when Allis-Chalmers tested an FCEV farm tractor, followed some years later by GM’s prototype hydrogen FCEV Electrovan in 1966.  FCEVs use a propulsion system whereby energy, stored as pure hydrogen gas, is converted to electricity by a fuel cell.

Initially, the fuel cells and associated piping were quite bulky (reducing the 6-seat GM Electrovan from a 6-seat van to a 2-seater that could barely accommodate 2 adult passengers), heavy (reducing range and acceleration, such that the Electrovan, which was never produced for sale, had a top speed and range of  only about 70 mph and 120 miles, respectively), and too expensive to mass produce.  As a result, meaningful FCEV production has lagged until well into the 21st century, when technological innovations have at last begun to make it possible for the FCEV concept to become a functioning reality.

Though FCEVs, and the hydrogen fueling infrastructure (i.e., stations equipped to pump hydrogen gas) necessary to support them, remain in a relatively early stage of development, certain major automobile manufacturers (including Honda, Hyundai, Toyota) are now offering a limited number of FCEVs to the public in certain markets (chiefly within California) where hydrogen refueling infrastructure is already in place, and passenger FCEVs currently in service now have a driving range between refueling of some 300 miles.

However, until retail refueling infrastructure shows a marked increase, most of the anticipated growth in hydrogen FCEV usage is likely to come from the municipal and commercial fleet sectors. By way of example, Toyota and Kenworth have recently announced development of a 10-vehicle zero emissions heavy-duty FCEV truck fleet to be put into service at the Port of Los Angeles.

Refueling and Maintaining Alternative Fuel Vehicles

While far fewer in number, refueling stations and equipment for vehicles powered by natural gas (approximately 1,900 service stations in North America) and hydrogen (no more than 50 service stations in North America, mostly in California, can accommodate hydrogen FCEVs) are similar in appearance to conventional gas stations and pumps, with large tanks from which drivers pump into their vehicles either natural gas, on the one hand, or hydrogen on the other.

According to the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy, proper maintenance of NGVs requires that the fuel storage tanks be inspected regularly, following accidents, or when there has been suspected damage.  NGV users must also be aware of end-of-life dates of their tanks, so that the tanks can be properly decommissioned as and when appropriate. Moreover, fuel filters should be inspected and, if necessary, replaced on a yearly basis.

Hydrogen FCEVs are maintained in much the same way as any other electric vehicle, including scheduled maintenance, and, if necessary, replacement of electric components and suspension parts. For a major overhaul, a vehicle will need to be serviced at a so-called “hardened shop”, at which there are specific requirements, including the presence of combustible gas monitors, curtains around the work area, and explosion-proof lighting fixtures.

Gas Detection Monitors Can Improve Safety in Alternative Fuels Servicing Facilities


Natural gas is odorless, colorless, and highly combustible. However, an odorant is normally added to natural gas to alert users if there is a leak.  If a natural gas leak occurs indoors, the gas is likely to rise and remain at ceiling level until ventilated outside.

To detect, and protect against the risks of, natural gas leaks, the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy recommends placing combustible gas detection monitors, containing visual and audible alarms, at the highest point (i.e., ceiling level) in natural gas fueling stations and repair facilities.

Hydrogen is also highly combustible, as well as odorless and colorless, making leaks undetectable (and dangerous), absent appropriate monitoring. Because hydrogen gas is light, it may disperse relatively quickly if a leak occurs outdoors, but if a leak occurs inside a building, the gas will, much like natural gas, rise to ceiling height, where it will remain until ventilated outside.

The International Fire Code and the National Fire Protection Association have set out requirements mandating the use of hydrogen sensors in hydrogen fueling stations and repair facilities.
Ideally, if there is a leak (whether of natural gas or hydrogen gas) in a facility, the combustible gas detection monitors should automatically activate that building’s ventilation system.

PureAireMonitors

PureAire Monitoring Systems’Combustible Gas Monitor (LEL) offers continuous readings of hydrogen, compressed, and liquified natural gas. In the event of a leak or buildup of gas to an unsafe level, the monitor will set off the alarm, replete with horns, flashing lights, and turn on the ventilation system.

PureAire’s Combustible GasMonitor (LEL) is housed in a NEMA 4 explosion proof enclosure suitable for Class1, groups B, C, D.

Friday, May 17, 2019

3D Printed Auto Parts—The Future Is Now


Overview

3D printing (also known as “additive manufacturing”) affords manufacturers the ability to create custom parts that fit together perfectly.  Utilized for decades in the medical products and aerospace parts industries, 3D printing is increasingly being used in other industries as well, including the relatively recent advent of 3D printed metal auto parts.

 New and Replacement Auto Parts

Automakers have made use of 3D printing processes since the late 1980s, with the initial output comprised primarily of plastic parts.  Manufacturers such as Ford, BMW, Bugatti, Chrysler, Honda, Toyota, among others, have embraced 3D printing in their research and development efforts, including the production of working prototypes.  While the automobile industry is currently unable to mass produce an all 3D printed vehicle, carmakers are already producing 3D printed parts, with the eventual goal, as soon as is feasible, of more fully integrating 3D printed parts into the original manufacture of future generations of automobiles.

Availing themselves of 3D printing processes for producing auto parts allows manufacturers to generate parts that are lightweight (which can improve fuel efficiency) and customizable, and that can be created quickly, enhancing the lean manufacturing focus on just in time inventory.  Although plastic has traditionally been the material most often used in printing parts, as advances in additive manufacturing have been made, so too has the use of alternative materials.

For instance, in 2018, French luxury automaker Bugatti announced that it had developed a new 3D printed titanium brake caliper prototype which, it claimed, was the largest functional titanium component produced with a 3D printer.  DS Automobiles, Citroen premium brand, has created 3D titanium printed parts for the ignition elements, as well as 3D printed titanium door handles, to give their DS 3 Dark Side edition vehicle a sleek, high tech feel.

Gas Usage In 3D Printing Process

To prevent corrosion, and to keep out impurities that can negatively impact the final product, 3D printed parts must be produced in an environment made free of oxygen, typically by the use of argon (and sometimes nitrogen) within the building chamber. That creates a stable printing environment, prevents fire hazards by keeping combustible dust inert, and controls thermal stress in order to reduce deformities.

Oxygen Monitors Can Improve Safety in Additive Manufacturing Processes

Dust from materials used in additive manufacturing, such as titanium, is, when exposed to oxygen, highly combustible and, therefore, requires monitoring to prevent possible explosions.Argon and nitrogen, while used in 3D printing for their oxygen depleting properties, require monitoring to ensure both the integrity of the finished part, and the safety of manufacturing personnel.

PureAire Monitors 

For quality control purposes, PureAire Monitoring Systems’ Air Check O2 0-1000ppm monitor has a remote sensor that can be placed directly within the printing build chamber, to continuously monitor the efficiency and purity of the O2 depleting gases (e.g. argon and nitrogen) used therein.



Moreover, to ensure employee safety, PureAire’s Oxygen Deficiency Monitors should be placed anywhere argon and nitrogen supply lines and storage tanks are located. In the event of an argon or nitrogen leak, a drop in oxygen will cause the built-in horn to sound and the lights to flash, thereby alerting employees to evacuate the area.  PureAire’s Oxygen Deficiency Monitors measure oxygen 24/7, with no time-consuming maintenance required. PureAire’s monitors feature long-lasting zirconium sensors, which are designed to give accurate readings, without calibration, for up to 10 years.








Tuesday, May 14, 2019

Winemaking - A Must Read


Background

The art and science of winemaking have been around for thousands of years. Winemakers rely on their instincts, palettes, and a thorough knowledge of the nuances involved in every stage of the winemaking process as they strive to achieve the flavors and qualities that they desire.Even a cursory overview of certain elements of the process underscores the critical role played by gases…from fermentation to first sip…in preserving the flavors created and nurtured by the winemaker’s skills.

From Harvesting to Fermentation

Since grapes do not continue to ripen after they have been picked, winemakers must carefully monitor the fruits when still on the vine, to ensure that they are harvested when flavor and ripeness are at peak levels. To protect the fragile grapevines, harvesting is typically done by hand, a laborious but important undertaking.

Once grapes are harvested, they are sorted and, sometimes, destemmed, and then crushed. At one time, grapes were crushed by hand (or, rather, by foot), but winemakers today crush them by using mechanical presses, which improves sanitation and the lifespan of the wine “must” (derived from the Latin phrase vinum mustum, or “young wine”), which is the industry term for the mixture of grape juice, seeds, and skins(and, in certain red wines, stems) that is the result of crushing.

The wine must is blanketed with nitrogen to reduce excessive levels of oxygen, which can oxidize the must, leaving it discolored and overly tart.For white wines, solids in the must are quickly removed after the crushing, in order to preserve the pale color of the juice.  For reds, solids are left in the must, to create a more flavorful wine.

Next, the young wine is transferred to fermentation tanks. The fermentation process begins when yeast is introduced to the must.  Most winemakers today use commercial yeasts, so they can control the predictability of the final product, though some winemakers (much like certain Belgian beermakers) continue to use the old-fashioned method of allowing wild yeasts to mix with the wine must. In either case, during fermentation, the yeast converts the grape sugars into alcohol. A byproduct of the fermentation process is carbon dioxide.  Too much carbon dioxide in the fermentation area can displace oxygen and create potential health and safety risks to employees.

The fermentation process can take anywhere from ten days to a month or more.  To maintain sweetness, some wines are not allowed to fully ferment, which leaves higher levels of sugar in the wine.

Once fermentation is complete, the wine is clarified or filtered, in order to remove residual solids and any other undesired particles. At that point, the fermented wine is transferred into aging vessels, most often either stainless-steel tanks or oak barrels.

Aging and Bottling

Exposure to oxygen can negatively impact a wine’s flavor, longevity, and overall quality. Inert gases, including argon, nitrogen, and carbon dioxide, may be used to flush oxygen out of the environment during storage, to help preserve the flavor and quality of the wine.

Flushing fermentation vessels, aging tanks, barrels, and bottles with an inert gas before filling with wine helps prevent oxidation, which is much dreaded by winemakers, as it produces discoloration, unpleasant aromas, and off flavors reminiscent of vinegar.

Oxygen Monitors Can Protect Winemakers and Their Employees

The same property--oxygen displacement --that makes inert gases ideal for winemaking, can be deadly if gas leaks from the supply lines or storage containers, or if there is a dangerous buildup of carbon dioxide during the fermentation stage. Employees could suffocate from breathing oxygen-deficient air and, since inert gases lack color, and odor, there is no way, absent appropriate monitoring, to determine if there has been a leak.

PureAire Monitors 

PureAire Monitoring Systems’ line of oxygen and dual oxygen/carbon dioxide monitors offer thorough air monitoring, with no time-consuming maintenance or calibration required. A screen displays current oxygen levels for at-a-glance reading by employees, who derive peace of mind from the monitor’s presence and reliable performance.

Built with zirconium oxide sensor cells and non-dispersive infrared sensor (NDIR)cells, to ensure longevity, PureAire O2 and O2/CO2 monitors can last, trouble-free, for over 10 years under normal operating conditions.

As such, the use of PureAire’s monitors will enable winemakers, in a cost-effective manner, to preserve both the quality of their wines and the well-being of their employees.

Saturday, April 20, 2019

New requirements for safe use and storage of liquid nitrogen and dry ice


The College of American Pathologists ("CAP")recently imposed new requirementsto address risks related to the use and storage of liquid nitrogen ("LN2") and dry ice.

Background

The new requirements come after a deadly incident in 2017, when liquid nitrogen leaked at a Georgia lab that was not accredited through CAP.  Emergency responders were called to the scene when an employee suffered burns and, moreover,lost consciousness from oxygen deprivation caused by the leak. While the employeeeventuallyrecovered from her injuries, one of the first responders died of asphyxiation as a result ofthe nitrogen leak.

That unfortunate incident illustrates the dangers of nitrogen leaks,which are inherent in the storage and use of LN2. Indeed, there are several cases reported nearly every year of laboratory personnel who die of asphyxiation caused by exposure to nitrogen gas.
Asphyxiation riskis present in dry ice usage as well since, if it is stored in areas without proper ventilation, dry ice can replaceoxygen with carbon dioxide, potentially causing workers to rapidly lose consciousness.

CAP’s New Regulations

Despite their safety risks, both dry ice and LN2 have many beneficial uses in commercial and lab settings, including hospital and research facilities. As such, CAP’s new focus on utilizing best practices to increase employee safety and reduce the danger of nitrogen leaks is vitally important.
Before the regulations were changed, lab directors had greater personal discretion in selectingthe types and deployment of safety equipment utilized in their facilities. Now, laboratories are required to place oxygen("O2") monitors at human height breathing levels anywhere liquid nitrogen is used or stored, and they must place signage warning of safety risk regarding, and train all affected employees on safe handling of, LN2 and dry ice.

Pathologists understand that oxygen/carbon dioxide monitors must be placed appropriately anywheredry ice or LN2 are used or stored.  Even a couple tanks of liquid nitrogen kept in a supply closet pose a safety risk, because even a small leak can quickly displace a large amount of oxygen.


Oxygen Monitors Protect Laboratory Workers

While many people realize that the use and storage of liquid nitrogen and dry ice can present health risks, they may fail to grasp the speed at which circumstances can become dangerous.  It takes only a few breaths of oxygen-deficient air for one to lose consciousness.

AS CAP recognized, oxygen and carbon dioxide monitors offer an effective solution to the health and safety risks posed by nitrogen leaks and inadequatedry ice storage. O2/CO2 monitors continually monitor the air, and they will remain silent so long as oxygen and carbon dioxideremain within normal levels.However,in the event that oxygen is depleted to an unsafe level (19.5%, as established by OSHA), or carbon dioxide levels rise to an unsafe level, alarms embedded in the monitors will sound, alerting employees to evacuate the area and summon assistance from qualified responders.

PureAireMonitors

PureAire Monitoring Systems’ line of oxygen and dual oxygen/carbon dioxide monitors offerthorough air  monitoring, with no time-consuming maintenance or calibration required., The monitors function well in confined spaces, such as closets, basements, and other cramped quarters.  PureAire’s monitors can handle temperatures as low as -40 C, making them ideally suited for environments, such as laboratories, that utilize liquid nitrogen or dry ice. A screen displays current oxygen levels for at-a-glance reading by employees, who derive peace of mind from the monitor’s presence and reliable performance.
Built with zirconium oxide sensor cells and non-dispersive infrared sensor (NDIR)cells, to ensure longevity, Pure Aire O2 monitors can last, trouble-free, for over 10 years under normal operating conditions.  That makes PureAire a cost-effective choice forprotecting employees and complying with the new safety regulations affecting labs and hospitals.
Learn more about oxygen monitors and best practices for their use at www.pureairemonitoring.com.

Thursday, April 11, 2019

From Farm to Market: Fruit Ripening


Fruit has a brief window where it is perfectly ripe. If farmers waited until every piece of fruit was ripe before harvesting, farming would be more labor-intensive as farmers rushed to pick ripe fruits. Prices might crash due to a short-term glut of fruit on the market. To ensure a steady supply and demand, keep prices competitive, and reduce food waste, farmers use artificial ripening procedures. One method for ripening fruit after harvest involves ripening chambers. Ripening chambers using ethylene, a natural plant hormone, enable the fruit to be harvested, stored, and transported to where it will be marketed and consumed. While ethylene ripening chambers are beneficial, they are not without risks.

How Ethylene Ripening Chambers Work

While there are other ways to artificially ripen fruit in ripening chambers, ethylene has become a favorite, since it occurs naturally in fruit.
Ethylene is a natural hormone found in plants. Fruits begin to ripen when exposed to ethylene, whether the exposure occurs naturally or artificially. In ethylene ripening chambers, unripe fruits are laid out, and the chamber is sealed.Ethylene gas is then piped into the sealed chamber. As the fruit is exposed to ethylene, the fruit
“respires”,which involves intake of oxygen andemission of carbon dioxide. For the ripened fruit to have the right color and flavor, the ripening should occur in a controlled atmosphere in which the temperature, humidity, ethylene, oxygen, and CO2 concentrationaremaintained at optimum levels.
However, there is a risk of combustion from the ethylene gas, as well as decreased levels of oxygen and increased levels of carbon dioxide inside the chamber.

How Oxygen/Carbon Dioxide and LEL Combustible Monitors Protect Employees

Low oxygen levels cause respiratory distress. If oxygen levels drop below the safe threshold for breathing, which could happen in the event of an ethylene gas leak, employees could suffocate. Suffocation is also a danger when there is too much carbon dioxide in the air. Ethylene gas used in ripening chambers would be hazardous if an employee were to enter the chamber before determining that oxygen and carbon dioxide were at safe levels.

A dual oxygen/carbon dioxide (O2/CO2) monitor detects the levels of oxygen and carbon dioxide within the chamber and sounds an alarm should the oxygen level falls to an OSHA action levelor if the carbon dioxide rises to an unsafe level.  By checking the monitor’s display, an employee will know when it is safe to enter the chamber.

PureAire Monitoring Systems has developed its dual O2/CO2 monitor with zirconium oxide and non-dispersive infrared sensor (“NDIR”) cells. The cells are unaffected by changing barometric pressure, storms, temperatures, and humidity, ensuring reliable performance.  Once installed, the dual O2/CO2 monitor needs no maintenance or calibration.

Ethylene is a highly flammable and combustible gas. If the gas lines used to pipe ethylene into the ripening chambers were to develop a leak, the chamber could fill with ethylene and reach combustible levels. A combustible gas monitor, which takes continuous readings of combustible gases, would warn employees of an ethylene leak within the chamber.

PureAire Monitoring System's Air Check LEL combustible gas monitor continuously monitors for failed sensor cell and communication line breaks. The Air Check LEL gas monitor is housed in an explosion-proof enclosure. If a leak or system error should occur, an alarm will immediately alert employees.

To learn about PureAire Monitoring Systems’ dual O2/CO2 monitors or the Air Check LEL Combustible monitor, please visit www.pureairemonitoring.com.

Tuesday, April 2, 2019

IVF Cryopreservation and Safe Handling Practices


Couples that want to have a baby but have not been able to conceive naturally are drawn to invitro fertilization (IVF) treatments.

In an IVF treatment, several eggs are fertilized at once, which creates multiple embryos. While more than one embryo may be implanted, to spur the odds of pregnancy, there are inevitably some unused embryos.

The remaining embryos may be preserved cryogenically, for use later, rather than destroyed. There are many reasons couples may select cryopreservation of embryos, including:
  • A second chance if the IVF treatment fails the first time around
  • The desire to have another child
  • As a precaution before undergoing medically necessary procedures that might the reduce the odds of a successful pregnancy, such as cancer treatment
  • Opportunity to use embryos in medical research
  • Opportunity to donate embryos to another couple
The National Embryo Donation Center estimates that there are over 700,000 human embryos currently stored in the United States.

The cryogenic process relies on cryoprotective agents (or CPAs), which protect the embryo from damage while it freezes. Damage may occur as ice crystals form during the freezing process. Without the use of CPAs, the ice crystals could pierce the embryo wall, causing embryo failure.

Cryopreservation facilities may use either a slow or fast method to freeze the embryos. In the slow method, embryos are frozen in stages, with protective agents added in slow doses over time. The frozen embryos are then preserved in liquid nitrogen until they are slowly thawed for use.

The fast-freezing method combines higher concentrations of CPAs to the embryo, after which the embryo is quickly plunged into liquid nitrogen. The process is so quick that ice is unable to form, thus protecting the embryo from damage.

Wherever liquid nitrogen is used, there are risks associated with nitrogen leaks. Nitrogen displaces oxygen, and a leak would rob the air of oxygen, thereby creating a health hazard for medical staff. When there is not enough oxygen in the air, persons working in the area can suffocate due to the lack of oxygen. Since nitrogen lacks color and odor, there is no way to detect a leak using the senses. In addition, a nitrogen leak could lead to failure of the cryopreservation tanks storing the embryos. In order to ensure the safety of employees, and the viability of the embryos, cryopreservation facilities need to rely on oxygen monitors.

How Oxygen Monitors Protect Employee Health in IVF Facilities

Oxygen monitors continually sample the air, taking periodic readings of current oxygen levels. In the event of a nitrogen leak, and a drop in oxygen to an OSHA action level, the built-in horn will sound, and lights will begin to flash, thereby providing notification to the employees that they must exit the area.

Best practice calls for oxygen monitors to be placed wherever nitrogen is used or stored. Not all oxygen monitors currently on the market are suitable for use in confined spaces or in freezers.

PureAire Monitoring Systems oxygen monitors are uniquely suited for use in an IVF facility, because the monitors can withstand temperatures as low as -40C.

PureAire Monitoring Systems monitors feature long-lasting zirconium sensors, which are designed to provide accurate readings, without calibration, for up to 10 years. Busy IVF facilities will appreciate the ease of use, and low maintenance of PureAire Monitoring Systems products.

To learn more or to view product specs, please visit www.pureairemonitoring.com