Tuesday, May 3, 2016

Chlorine Safety and Prevention: How to Protect Yourself from Chlorine Leaks

While chlorine gas is widely used in swimming pools, water treatment facilities, cleaning products, pharmaceutical products, and in many other industries, the gas is highly toxic when handled improperly. Training your workers on how to safely use chlorine is one part of health and safety best practices; monitoring your workplace for chlorine leaks is another. Learn about the hidden dangers in this common substance and how you can stay safe. 


The "Hidden Dangers" of Chlorine 

So many everyday things that you see and touch have come into contact with chlorine. The substance is a common cleaner and disinfectant because it is easy to use and inexpensive. Chlorine is also used in agricultural pesticides, in the manufacturing of drugs, in wastewater treatment facilities and the sanitizing of everyday drinking water, in paper manufacturing, in hospitality swimming pools and spas, and in many other products. No matter where it is being used, chlorine must be properly handled by all staff at all times. 

At room temperature, high chlorine levels are toxic. If chlorine gas comes into contact with substances including ammonia, ether, hydrogen, and turpentine, it can combust. Since this gas can cause breathing problems, it is dangerous to individuals with respiratory problems including asthma. 
The gas is yellowish at room temperature and has a distinct odor, so staff will be able to see and smell the substance. While this does aid in awareness of chlorine leaks, it is not sufficient to trust that your staff will see or smell leaked chlorine and leave. 

Employees exposed to chlorine can experience eye damage, coughing, choking, frostbite on the skin, and respiratory problems. In a worst case scenario, staff can die from suffocation due to sustained chlorine exposure. 

Fortunately, fixed gas monitors are an efficient way to protect staff from a chlorine leak. 

How PureAire Universal Gas Detectors Protect You From Chlorine Leaks

At PureAire, we offer universal gas monitors that protect against chlorine and other gases. PureAire's universal gas detectors are compact and designed for wall mounting in areas where you store or work with gases. Once installed, these detectors continually performs gas detection and monitoring. The maximum acceptable level of chlorine that workers can be exposed to, per OSHA regulations, is 1.0 parts per million (ppm). Chlorine is considered to be "Immediately Dangerous to Life and Health" when levels reach 10 ppm. As long as levels of chlorine remain below the acceptable safe level of 1.0 ppm, the detector is silent. Yet if gas leaks out and levels rise above the maximum acceptable level, the PureAire gas detector will sound an alert and flash a light so that staff will see or hear the alarm. 

Staff can then have enough time to stop what they are doing, exit the premises, and wait for emergency responders to contain the chlorine leak. When staff are alerted as soon as levels exceed those deemed safe, they can get out of the building before succumbing to chlorine-related health hazards. 

The universal gas monitor from PureAire protects against toxic gases including chlorine, hydrogen chlorine, ammonia, hydrogen fluoride, and other gases. Once installed, the PureAire detector will last for more than seven years without requiring any maintenance. If you seek a safe solution that delivers peace of mind and effective protection from chlorine leaks, PureAire's fixed gas monitor is a cost-effective, reliable option. 

Capable of chlorine gas detection in temperatures as low as -25 Fahrenheit up to to 22 Fahrenheit (-32 C to 50 C), these gas detectors offer flexible gas monitoring for visible and invisible toxins. PureAire's universal gas monitor is also water resistant and capable of detecting gases within a 30-foot range. 

Since PureAire's detectors have such a long lifespan, they are a convenient way to address gas leaks in the workplace. An optional long life renewable sensor extends the lifespan of these gas monitors by recharging the battery. 

After you install the gas monitor, your staff can work with chlorine and other gases with the certainty of knowing that their safety is protected. To protect your workers and your business assets, look to PureAire. View their fixed gas monitor or learn more at http://www.pureairemonitoring.com

Wednesday, April 20, 2016

PureAire Universal Gas Detector Offers Protection Against Toxic Levels of Ammonia



In March of 2016, an ammonia gas leak at a seafood processing plant in Boston left one worker dead. The fumes at the plant were so powerful that firefighters could not promptly enter the scene to mitigate the gas leak and try to save the staff member until much later. Reports show that 5,300 pounds of ammonia gas leaked out of the plant. If you work with ammonia at your facility, learn why this gas is so dangerous and one simple thing that you can do to prevent a tragedy like this from affecting your workers. 
The Hidden Dangers of Ammonia 
Ammonia is commonly used in refrigeration of dairy, meat, food processing, and cold storage. In fact, almost everything you can buy at your local grocery store has passed through an ammonia refrigeration site before making its way to your local store. 
A mixture of nitrogen and hydrogen, ammonia has been used in refrigeration since the 1800's. It is energy-efficient, inexpensive, more environmentally friendly than chlorofluorocarbon (Freon) refrigerant, and widely available via commercial manufacturing. While it may have started off as a refrigerant of food, ammonia is also used today for ice and water chilling in office buildings. In Europe, ammonia has additional applications in air conditioners in public buildings including hospitals and airports. The substance is also used in industries as diverse as semiconductor manufacturing, environmental emission monitoring, agricultural fertilizer, and chemical manufacturing.
As useful as ammonia is, it is also a dangerous substance when not properly stored. It can combust at high heat. While colorless, ammonia gas has a noxious odor. 
When workers are exposed to ammonia gas, they can experience skin and eye irritation. If concentrations of ammonia are high, burning and injury can result. In some cases permanent eye damage or blindness can occur. 
Workers will immediately know they are exposed to a harmful substance from symptoms including respiratory and nasal burning. Even though staff have a warning due to ammonia's odor, the substance causes adaptation. Workers may perceive a slight ammonia odor at low levels of exposure, and adjust to the scent so they can't tell when concentration has surpassed acceptable levels. 
In a worst case scenario, those exposed to ammonia will experience respiratory failure and die. The good news is, there are ways to protect staff from ammonia exposure using universal gas detection tools. 
How PureAire Universal Gas Detectors Protect Staff from Ammonia Exposure
PureAire's universal gas monitors protect against not only ammonia, but bromine, chlorine, hydrogen chloride, hydrogen fluoride, hydrides and other gases. Once installed, the monitor continually checks levels of gases and provides a visual and aural alert if levels of any substance exceed safe levels. 
This is a simple solution for round the clock gas monitoring for ammonia and many other hazardous gases. While ammonia has an odor, many other dangerous gases do not. Gas monitoring protects workers against substances they can smell as well as "silent killers" they cannot see or smell. With a universal gas monitor installed, workers can perform their duties secure in the knowledge that they will be alerted if ammonia or another substance leaks into the environment. 
After installation, the universal gas detector will work for over seven years with no maintenance. PureAire's gas monitor are built to outlast the competition to provide improved peace of mind for management and staff. 
If an ammonia leak were to happen, the gas monitor would sound an alarm so that workers can safely evacuate before succumbing to respiratory damage or failure. With staff outside the premises, everyone is thereby safe until first responders can deal with the leak. For example, in the Boston incident, the worker would have been able to escape the seafood plant with his life, resulting in an ammonia leak with no fatalities. 
Not only is gas detection the right thing to do for peace of mind, it can safeguard your business assets and personnel from dangers. To learn more about PureAire's line of universal gas detectors, please visit http://www.pureairemonitoring.com

Source

http://www.bostonherald.com/news/local_coverage/2016/03/worker_dies_in_ammonia_leak_at_plant_in_seaport

https://www.health.ny.gov/environmental/emergency/chemical_terrorism/ammonia_tech.htm

Tuesday, April 5, 2016

PureAire Universal Gas Monitor Receives UL Listing

PureAire is pleased to announce that its PureAire Universal Gas Monitor received the UL/CUL listing for models 99030 and 99031. PureAire’s Universal monitors comply with national and international safety standards, including UL 61010-1, CSA C22.2 NO. 61010-1-12-CAN/CSA, and IEC/EN 31010-1. 

Designed to protect against toxic gases including ammonia, bromine, chlorine, hydrogen chloride, hydrogen fluoride, hydrides and other gases, the universal gas monitor from PureAire offers continuous monitoring against unsafe gas levels. A universal gas monitor provides an easy and cost-effective solution for consistent monitoring for those organizations that need to work with these potentially toxic gases, yet wish to safeguard their workers. 

PureAire universal gas monitors are recommended for settings as diverse as cold food storage, chemical plants, semiconductors, manufacturing plants, pharmaceutical operations, and laboratory settings. PureAire's line of universal gas monitors allow facilities to work with these gases in a safe and responsible manner. The renewable sensor lasts for more than 7 years, longer than those of competitors. A built-in alarm sounds when gases surpass safe levels, allowing workers to take notice even when they cannot otherwise see, smell, or taste the gases. PureAire's universal gas monitors also have a 4-20 mA signal and 2 user-selectable relays, which can signal external horns, strobes, or fans. 

About PureAire

PureAire, which was founded in 1997, offers a line of oxygen monitoring devices and universal gas monitors for use in commercial, retail, educational, laboratory, and other settings. PureAire's line of universal gas monitors have sensors guaranteed to last for 7 years without maintenance, offering superior performance and reliability. The universal gas monitors run on a UL listed 24 VDC power supply. To learn more about PureAire or view their line of universal gas monitors, please visit www.Pureairemonitoring.com.

Thursday, March 24, 2016

Fertility Clinics and Egg Freezing: Nitrogen Use and How to Remain Safe

For women who want to have children when the time is right, egg freezing is a viable option and one that has become more popular in recent years. As an abundance of fertility clinics pop up nationwide, it is important to consider the safety implications of IVF, egg freezing, and fertility clinics. Dive into the world of fertility clinics to understand how eggs remain viable -- sometimes for years after harvesting -- and what risks the environment holds.

How Do Fertility Clinics Harvest and Store Eggs?

During the monthly menstrual cycle, women release a viable egg. In the fertility harvesting process, IVF clinicians administer hormones that increase egg production so they can harvest and store multiple eggs in a one-time procedure.
Doctors first administer hormone injections to inflate egg production prior to harvesting and storage. Three days after the final injection, the eggs are ready for harvesting. At this point, female patients then have eggs harvested from their ovaries using needles. Now the patient's role is simply to leave the eggs at the IVF facility until she wishes to be inseminated.
Traditionally, eggs were frozen for long-term storage, then thawed out when patients wanted to use the eggs. This method worked, but had a suboptimal success rate during IVF.

A new method, termed vitrification, increases the success rate of egg freezing for in vitro fertilization. Vitrification uses a flash freezing process to quickly freeze the eggs for long-term storage. After the eggs have frozen, they are then stored inside tanks of liquid nitrogen until they are needed. The new method reduces the formation of ice crystals, which can damage the egg during the thawing out.

The main risk that doctors counsel patients on is the chance that some or all of the eggs will perish in the process. Freezing of eggs is still a relatively new procedure. However, there is a greater risk involved. One that could affect female patients, their eggs, and fertility clinic staff: The risk of liquid nitrogen exposure.

Nitrogen Warnings in the Fertility Clinic Setting

Liquid nitrogen is perfectly safe as long as it remains in storage tanks. If even a single tank were to develop a leak, and the substance were to spill out into the fertility clinic, a lot more would be at stake than the viability of stored eggs for in vitro fertilization.

Nitrogen has the potential to deplete oxygen from an environment. At first, this may cause discomfort, dizziness, or confusion. As the leak continues and displaces more oxygen from the room, staff can asphyxiate. Since the gas cannot be seen or smelled, employees will not know something is wrong until it is too late and lives are lost.
For the safety of clinic staff, an oxygen deficiency monitor can be installed near the liquid nitrogen tank. This monitor takes periodic readings of the oxygen levels in the room. When everything is working properly and the oxygen is within the normal range, the monitor remains silent yet vigilant. In a worst case scenario where a nitrogen leak does develop, the O2 monitor will sound an alert once the oxygen in the room falls below acceptable levels. The alarm gives staff enough notice to escape the premises before being overcome by the lack of oxygen.
Like a carbon monoxide detector, an oxygen deficiency monitor does not really do anything until something goes wrong but can save lives in the event of an emergency. As with a carbon monoxide detector, it is important to select and install a quality O2 monitor.

The latest generation of oxygen monitors from PureAire come with a zirconium sensor, which requires no calibration or maintenance. Staff can install the O2 monitor in the IVF facility and remain assured that it will work for a period of 10 years with no maintenance of any kind.

For a reliable oxygen deficiency monitor, look to PureAire, a company with over 15 years of experience in the field. Learn more about PureAire's products at www.pureairemonitoring.com.


Thursday, February 11, 2016

Nitrogen Generators: Where are they Installed and How to Stay Safe?


Used in a range of industries, nitrogen generators ensure a steady supply of 99.5% pure, commercially sterile nitrogen from a compressed air storage tank. From an industrial standpoint, nitrogen generators are seen as preferable to cylinders of nitrogen as they are more reliable, more compact, and easy to use and install. However, these generators are not without risk. Learn about nitrogen generator installation best practices and how to stay safe when using these devices in your facility. 

Where are Nitrogen Generators Installed? 

Since nitrogen generators have such a wide array of end use cases, they wind up getting installed in different commercial environments. Nitrogen generators may exist in: 
  • Brewing operations - To sparge and mix the wort 
  • Food processing and packaging plants - In the food packaging process  
  • Industry - To test and clean tanks and vessels
  • Engineering facilities - For use in manufacturing, testing, and product development
  • Automotive plants - In paint booths 
These generators offer a steady supply of nitrogen at a lower cost than using gas cylinders. One generator takes up less room than several cylinders, saving floor space where it is needed most. A generator is easy to install and simpler for employees to use (since it requires less maintenance) than cylinders, so many manufacturers have switched from using cylinders of nitrogen to using generators. 

Nitrogen generators are most often operated indoors, as these typical use cases show. In the event of a leak or other problem with the generator, escaping gas has nowhere to go other than inside the building. In some cases, the building may be set up so that nitrogen generators vent to the outside, thus offering a buffer from the harmful gas; however, it is not always possible to vent the generator to plain air. 

That said, these units do post a risk. Nitrogen is a colorless, odorless gas that creates an oxygen deficient state. If the generator were to develop a leak, nitrogen gas could leak out undetected into the work environment. In a matter of minutes, nitrogen gas from a leaking tank can deplete the workspace of oxygen. To protect the health of your employees, it is necessary to only use nitrogen generators in conjunction with an oxygen monitor, which alerts staff to low levels of oxygen. 

Why You Need an Oxygen Monitor With Nitrogen Generators

An O2 monitor, or oxygen monitor, continually monitors the level of oxygen in the room. When there is enough oxygen, the detector stays silent. A normal oxygen value is 21 percent by volume.  If something unexpected happens -- such as a nitrogen leak -- and the amount of oxygen in the room begins to fall, the monitor sounds an alarm and flashes to grab staff attention. This way, staff have advance knowledge and can leave the work space before oxygen levels fall too low. 
Oxygen monitors can alert staff if levels fall too low (19.5 percent or less) or too high (23.5 percent or above). Low levels of oxygen pose a severe health hazard for individuals, while high levels of oxygen pose a fire and combustion hazard. 

Without an O2 monitor in place, staff would have no knowledge of a nitrogen problem until it was too late. When oxygen levels fall below the acceptable threshold, staff can become disoriented and fatigued, while succumbing to a euphoria that can dissuade them from noticing that something has gone wrong. Loss of coordination and mental processing skills, followed by poor judgment, vomiting, nausea, and eventually death by asphyxiation as oxygen levels continue to fall. 

An additional consideration for large facilities is that nitrogen gas is often used far from the actual location of the generator. Thus, even if the generator you have purchased comes with an O2 monitor of its own, the monitor may not be able to test working conditions where the nitrogen is actually in use. A facility may need multiple oxygen monitors to make sure that all areas where nitrogen gas is used have acceptable air quality. 

PureAire offers O2 monitors that work in conjunction with nitrogen generators. PureAire's line of oxygen detectors rely on zirconium sensors, which are guaranteed to work for at least 10 years without calibration. When it comes to protecting your staff, it's the wise choice. Explore PureAire's lineup of oxygen detectors at http://www.pureairemonitoring.com. 


Monday, December 14, 2015

The Hidden Dangers and Facts of Cryotherapy: How to Remain Safe and Get Health benefits too

While cryotherapy or frost therapy has been used for millennia, the new cryotherapy center fad that's become popular in salon culture has come under scrutiny when a 24-year-old woman who worked at a cryohealth center in Las Vegas was found dead after using a cryo chamber at work. Learn more about cryotherapy, what it claims to do for the body, and whether or not it can be safely used. 

The Health Benefits of Cryotherapy

Advocates claim that there are many benefits of cryotherapy and that the treatment is highly safe when it is properly performed. The type of whole body cryotherapy in use at cryohealth centers today was developed in 1978 as a rheumatoid arthritis treatment. While this treatment is often covered by health insurance in other nations, the U.S.healthcare industry does not recognize cryotherapy for insurance purposes or much regulate the field. 
Unlike immersion in an ice bath, the chill of cryotherapy is dry so it does not feel uncomfortable, like submersion in an ice bath would. Exposure to chilled air can treat sports injuries, muscle soreness, joint pain, pain and inflammation associated with health conditions like arthritis or fibromyalgia, and immune function. Some even claim that cryotherapy can help with weight loss or delay the aging process. 

Is Cryotherapy Safe? 
Individuals with certain health conditions -- including hypertension, heart disease, seizures, anemia, pregnancy, and claustrophobia -- should not use cryotherapy. For other individuals, cryotherapy has generally been considered safe. Some individuals may experience redness or skin irritation, an allergic reaction to the cold, frostbite, or skin burns. 
If the individual stays in the cryotherapy chamber longer than recommended, or the facility does not take the proper precautions, health risks increase. Typically, people are only supposed to expose themselves to the cold temperatures in the cryo chamber for two to three minutes. The salon where the woman died was apparently selling 30-minute sessions, the New York Post reports. 30 minutes is too long to spend in frigid temperatures. 

In the case of the employee who died in a cryotherapy chamber, no one apparently knew the woman was in there since she went in alone after work. Most cryotherapy chambers only allow people to use the facility when someone is onsite monitoring them as a first line safety precaution. 

Even if the employee did not follow proper procedures in entering the cryo chamber, her death raised awareness of hidden dangers in this unregulated industry. People want to know whether this popular treatment is safe for them. The salon where the woman died was not licensed with the State of Nevada.

Safety Measures for Cryotherapy

Cryotherapy can be safe when performed by a licensed facility that has safeguards in place to make sure that those undergoing treatment do not stay in too long, do not get overlooked, and are not exposed to environmental hazards. 
One reliable way to monitor the environment of the cryo chamber is to use an oxygen monitor or oxygen deficiency monitor. An oxygen deficiency monitor continuously measures the amount of oxygen in the environment and sets off an alarm if oxygen falls below a safe level. 

Cryohealth chambers use a form of nitrogen to create a dry frost and chill the chamber. Nitrogen, when used in high doses, creates an oxygen deficient environment. In a worst-case scenario, the room could become so oxygen deficient that anyone inside could suffocate to death. 
Since nitrogen does not have an odor or a color, individuals cannot see it. When a cryohealth chamber is equipped with an oxygen monitor, the air inside will not fall below safe levels without first alerting staff to the drop in oxygen. Staff can then assist any patients in evacuating the cryotherapy chamber before something bad happens.  

PureAire offers O2 monitors that are made with zirconium sensors, which are guaranteed to last for at least 10 years and hold up equally well in humid and dry environments. Once the facility sets up O2 monitors in every cryo chamber, staff can rest assured that the monitors will alert them to any sudden change in oxygen levels with enough time to get people outside of the chamber before something bad happens. 

When a facility uses oxygen monitors inside the chambers, has a license from the State, and ensures that staff monitor the chambers during treatments, cryotherapy can be performed safely. 

To learn more about PureAire's line of oxygen deficiency monitors, visit www.pureairemonitoring.com.


Additive Manufacturing 3D Printing: The Growth Progress and Need for Safety Monitors

3D printing is officially skyrocketing, with industrial applications in medical, biotech, aerospace, defense, and consumer electronics industries growing daily. At the heart of this acceleration is the additive manufacturing or AM process, which allows for easy printing from computer-aided design templates. As this new technology reaches its tipping point, review what the growth process says about the safety of 3D printing. 

3D Printing: Additive Manufacturing at a Tipping Point

No longer solely the terrain of artists and inventors making one-off products, 3D printing is finally going mainstream: Major companies including GE, Boeing, Lockheed Martin, NASA and Google have adopted 3D printing as of 2014. This widespread adoption heralds the move of 3D printing away from niche technology and toward a mainstream staple of next-generation manufacturing.
In the 3D printing process, the printer deposits layers one at a time, essentially building up the prototype before bonds the layers together. In the laser sintering process, a special laser melts and fuses the layers together, to bring the design to life. Because employees can make changes to the prototype between items, it is relatively easy to make changes to the item color, size, or shape from one printed item to the next. This makes it possible for individual medical devices or accessories to be printed from a select stock of computer-aided design (CAD) templates. 
Major companies like those mentioned above can afford to make the investment in 3D printing and AM because they have the funds to purchase the costly equipment needed for the initial foray. While 3D printers have become more widespread, they are not cheap. Compared with other types of manufacturing, it costs a lot to make something like an airplane part or a dental device using 3D printing over traditional printing. 

However, the initial expenses in 3D printing represents the peak costs to the business. After the device or the part is perfected, the company can utilize the same equipment and printing patterns to effectively mass produce the unit. Aside from ongoing expenses for printing supplies, the cost to produce subsequent parts is quite low. 

The competitive advantage of being able to offer something like a personalized medical device is well worth the initial cost of 3D printing. As printable materials continue to expand, more companies will invest in 3D printing to develop niche-appropriate custom products and solutions. This is not without its dangers to the business and its employees. Protect yourself by learning more.  

The Hidden Dangers of 3D Printing

While it may seem like a safe process -- and, indeed, the end result is quite safe -- 3D printing does utilize some potentially dangerous materials. Argon gas is particularly common in certain types of 3D printing. In the printing process, the 3D printer deposits thin layers of powder to effectively build the form that is being produced. The argon gas allows the different layers of powder to fuse together during the laser sintering, bringing the product to life in three dimensions. 
Argon is relatively inexpensive and highly effective at this task, which accounts for its widespread use in this new niche. However, argon is also a dense gas that is naturally heavier than oxygen. Were argon to escape from the 3D printing environment and enter the workshop or manufacturing floor, it would deplete the oxygen in the room. Any staff working there would thus face death by asphyxiation. Since argon is colorless and odorless, there is no easy way for staff to tell there is a problem. 

As 3D printing becomes more widespread, businesses must take the appropriate safety measures to ensure a safe working environment. They must inspect printing equipment to ensure that it is functioning properly and argon will remain contained in the printer. They must also introduce safeguards to protect staff in case of a malfunction. 
One simple and cost-effective solution is to install an oxygen monitor, which is also known as an O2 monitor. This type of sensor continually monitors the levels of oxygen in the room. If oxygen levels falls below the critical safety levels, such that employee health would be threatened, the oxygen monitor sounds an alarm to alert staff to the health threat. Staff can then evacuate immediately, and appropriate measures can be taken to secure the workplace environment and protect the printing technology.

PureAire offers sophisticated O2 monitors, which use a 10+ year no calibration sensor to offer durable everyday protection. PureAire's sensors are the perfect choice for 3D printing environment protection. To learn more about PureAire's lineup of oxygen monitor for argon gas detection, please visit http://www.pureaire.net or email us at info@pureaire.net.

Source

https://hbr.org/2015/05/the-3-d-printing-revolution

http://www.pureairemonitoring.com/argon-gas-3d-printing-stay-safe/