Showing posts with label O2 sensor. Show all posts
Showing posts with label O2 sensor. Show all posts

Thursday, February 15, 2018

Taste the Difference with Nitrogen Packed Coffee Grounds




When it comes to flavor, coffee purists prefer whole beans, which retain their flavors longer than ground coffee. Yet there's no denying the convenience factor of ground coffee, which is why it's so popular in offices. Ground coffee has a short shelf life -- hence the push to use airtight containers, which keep the flavors in the coffee -- and off flavors may develop if the coffee grounds are left on the shelf too long. Some coffee companies are trying a new trick to add shelf stability to their ground coffee: a nitrogen flush.

How Nitrogen Flushing Preserves Coffee Grounds

Oxygen is the enemy of ground coffee: When coffee grounds come into contact with oxygen, they go stale faster. This is why coffee grounds are sold in vacuum-sealed containers, and why consumers are encouraged to use airtight containers. For best flavor, coffee beans should also be stored in dark containers (so light does not pass through).

Some amount of oxygen is produced (in the form of CO2) as the ground coffee degasses, a naturally occurring process. To release these gases and preserve coffee flavor, many coffee bags contain a one-way valve. Oxygen escapes through the valve, but cannot come back into the bag.

Some coffee companies are taking it one step further by flushing the bag with nitrogen gas during the coffee packaging process, which ensures that no oxygen is in the bag with the coffee where it would cause spoilage. Nitrogen gas is heavier than oxygen, so when it is pushed into the empty coffee bag, it displaces oxygen. The bag is then filled with coffee grounds and sealed with no ambient oxygen in the sack. This preserves coffee flavor.

Since nitrogen gas has no color or odor, it does not affect the taste of the coffee. What consumers get, months later, is grounds that are as fresh as they were the day the coffee was roasted and ground.
While this is beneficial for the consumer, nitrogen flushing may prevent problems at the packaging plant. Just as nitrogen gas flushes oxygen out of the bag, so can it displace oxygen from the room. If a leak were to occur, employees would not be able to tell (remember, the gas has no smell, odor, or color). A leak could push so much oxygen out of the air that staff could suffer respiratory problems, death via asphyxiation being the worst-case scenario.

How an Oxygen Sensor Can Protect Your Employees

Since nitrogen displaces oxygen, it's easy to detect a leak by tracking the levels of oxygen in the room. Oxygen sensors -- also known as oxygen deficiency monitors -- continually monitor oxygen levels. As long as the room air remains stable, there's no leak. When the levels of oxygen in the air fall to the OSHA threshold of 19.5 percent, where a health threat is imminent, the sensor will go off. Employees will see a flashing light and hear a loud alarm that warns of the low levels of oxygen. Staff can exit the packaging facility without suffering adverse health effects; they also enjoy peace of mind every day by checking the O2 monitor.

PureAire supplies coffee manufacturers with oxygen sensors that help them offer a higher-quality product without placing workers at risk. PureAire's oxygen deficiency monitor requires no maintenance and calibration once installed, thanks to a hardy zirconium sensor. Once installed, the O2 monitor will provide accurate readouts and leak detection for 10 or more years. PureAire's oxygen deficiency monitors function properly despite changes to barometric pressure, thunderstorms, and other weather events. Suitable for use in freezers, basements, and other confined spaces, PureAire's monitors perform in temperatures from 55 Celsius to -40 Celsius.

To protect worker safety, an oxygen monitor should be used wherever nitrogen gas is stored or used. Learn more about PureAire's products at www.pureairemonitoring.com.

Tuesday, May 9, 2017

University Environmental Health & Safety Departments: Handling Compressed Nitrogen and Cryogenics



An explosion at a university research lab in Hawaii last year highlights the dangers of working with compressed gas and the need for safety equipment on campus. Learn the dangers of working with compressed gas, how an oxygen deficiency monitor can help, and campus safety best practices. 

Compressed Gas on Campus: Uses and Dangers


Compressed gases including nitrogen, argon, and oxygen are widely used on campuses. These gases have many practical and educational uses across educational institutions. While the level of risk varies across schools, a few examples will illustrate the benefits and the risks of using compressed gas on campus.

Argon gas is critical in the 3D printing process, which campus design, fine arts, applied arts, and sciences may use. Culinary programs may use liquid nitrogen for cooking and freezing, and chemistry labs may use N2 as well. Autoclaves, which sterilize equipment, are regularly used in scientific, medical, and industrial programs. Sports programs and physical therapy training programs may use cryotherapy for injury recovery. Cryotherapy chambers rely on nitrogen to chill the air. The chambers can turn deadly if a nitrogen leak occurs. These gases may be used by facilities personnel, researchers, faculty members or teaching assistants and students assisting with teaching labs. No matter which gas students are working with, they are at risk if the gas is not handled, used, stored, or transported properly. 

As these few examples illustrate, there are many opportunities for dangerous leaks, explosions, or fires on campus if safety protocol isn't followed. Many schools find the gases are not properly stored, which leaves everyone on campus in danger. A recent safety bulletin from the University of Rochester found that liquid nitrogen was stored without an oxygen sensor, poisonous gas was used with a fume hood that did not adequately vent hazardous fumes, gas cylinders were modified using unacceptable materials, and gas tanks were stored without protective chains, stands, and gas caps. 

Why Schools and Universities Need an O2 Monitor 

As the incident in the Hawaiian university lab illustrates clearly, compressed gases pose significant health risks in the university setting. Whenever safety protocol is not followed, the tanks are at greater risk of tipping, falling over, or leaking. 

While the lab worker escaped with her life, many others have not been so lucky. A nitrogen (N2) gas leak causes death via asphyxiation in a matter of minutes. 

Nitrogen gas is both odorless and colorless. If gas leaks from a canister, there is no way for passerby to tell. As the gas leaks, it lowers ambient oxygen levels below safe thresholds. When levels of oxygen in the air fall below 16 percent, people can experience adverse health affects. Additionally, university property can be damaged by fires or explosions. 

All it takes it a couple of breaths of oxygen-deficient air for symptoms including confusion, dizziness, fatigue, muscular aches, lack of consciousness, and even death. 

Given the clear dangers that these gases pose, universities and schools must take steps to protect their students and staff. Fortunately, there is an easy and cost-effective way to detect gas leaks and alert everyone before oxygen is depleted from the air: Installing an O2 monitor. 

An O2 monitor, also called an O2 deficiency monitor, measures levels of oxygen in the air all the time. As long as the air has adequate oxygen, the monitor will stay silent. When levels fall below safe thresholds, the oxygen deficiency monitor will flash lights and sound an alarm. This way, everyone in the vicinity of the leak can escape without suffering adverse health effects. 

An O2 deficiency monitor should be installed anywhere that these gases are used or stored. Universities and schools may wish to equip labs, storage facilities, equipment rooms, and hallways or corridors that connect storage rooms with labs or classrooms where the gas is used. 

PureAire offers robust oxygen deficiency monitors that feature best in class construction. Made with zirconium oxide sensors, these monitors offer 10 or more years of maintenance-free performance once installed. These monitors can detect leaks of gases including argon, nitrogen, and helium. View PureAire's line of oxygen deficiency monitors at www.pureairemonitoring.com.