Showing posts with label Toxic Gas Detection. Show all posts
Showing posts with label Toxic Gas Detection. Show all posts

Saturday, June 26, 2021

The Hidden Dangers Inside Boiler Rooms - Why You Need a Boiler Room Gas Monitor

 


In an effort to prevent boiler room accidents due to elevated levels of carbon monoxide, the Texas Department of Licensing and Regulation (TDLR) has adopted new regulations (16 Tex. Admin. Code § 65.206) regarding carbon monoxide (CO) gas detection equipment that is used in boiler rooms built on or after September 1, 2020.

Carbon monoxide

Carbon monoxide gas is produced from the incomplete burning of natural gas, wood, coal, oil, propane gas, or anything else that contains carbon. In enclosed spaces such as boiler rooms, where fuels such as natural gas, oil, coal, or propane may be used,  CO levels can rise quickly creating a dangerous health and safety risk. Carbon monoxide is an odorless, colorless, tasteless, and flammable gas that can be deadly within minutes without warning.

Exposure to CO can cause chest tightness, headache, fatigue, dizziness, nausea, confusion, loss of consciousness, and even death.

Additionally, carbon monoxide gas is highly flammable and can ignite easily when exposed to oxygen and/or source of ignition such as a spark or excessive heat.

Methane

Methane (CH4), a primary component of natural gas, produces carbon monoxide if incompletely burned. Methane, like CO, is colorless, highly flammable, and odorless unless an additive is used to give it an odor . High levels of methane can deplete oxygen causing headaches, dizziness, weakness, loss of coordination, and asphyxiation.

Keeping Boiler Rooms Safe with a Dual CO/CH4 Combustible Gas Detector

Carbon monoxide is often referred to as a silent killer because it has no warning properties. Absent appropriate gas detection equipment, people working in and around boiler rooms, would be unable to detect an accumulation of carbon monoxide.To detect, and protect against, risks emanating from excessive concentrations of CO or CH4, best practices include placing gas detection monitors, containing visual and audible alarms, in boiler rooms where carbon monoxide or methane may accumulate.

PureAire Gas Detectors

PureAire Monitoring Systems’ Dual Carbon Monoxide/Methane Combustible Gas Detector offers continuous readings of CO and CH4. The gas detector features an easy to read screen, which displays current carbon monoxide and methane levels for at-a-glance observation by employees servicing boiler rooms, who derive peace of mind from the detector’s presence and reliable performance. In the event of an accumulation of carbon monoxide or methane to an unsafe level, the detector will set off an alarm, complete with horns and flashing lights, alerting personnel to evacuate the area. At the same time, the PureAire gas detector can be programmed to disable the burners when CO levels reach a user selectable ppm level.

The monitor is housed in a NEMA 7 explosion proof enclosure suitable for Class 1, Division 1 and  2, Group B, C,  and D.


Wednesday, May 5, 2021

Solvent Safety in Pharmaceutical Manufacturing

 


The manufacture of pharmaceutical products is a complex and multi-stage operation that can include processes such as blending, wet and dry granulation, milling, hot-melt extrusion, coating, andtablet pressing. Producing the exact formulation, release rate, consistency, and dosage form requires many chemical compounds and substances.

Among the mare active pharmaceutical ingredients (API), the primary and biologically active medicinal component of the drug; excipients, the non-active components, including lipids,which serve as carriers, solubilizers, or emulsifiers of the active ingredients; and plastics or polymers used in production to create the dispensing form of the finished pharmaceutical product.

Lipids and Polymers

Lipids and polymers are vitally important to the drug production process. They are used for the fabrication of most dosage forms, release rate modifiers, enhanced drug absorption, stabilizers, solubilizers, and more.

Lipids, which are soluble in organic solvents such as ethanol, isopropyl alcohol, acetone, and benzene, are purified and refined to be used as fillers, binders, lubricants, solubilizers, emulsifiers, and emollients in a variety of delivery forms, including tablets, capsules, suppositories, emulsions, ointments, creams, and lotions.

Polymers are used in a wide variety of applications that can include everything from film coatings on medicines, to controlling the release rate of drug formulations.They are also used as a taste masking agent, stabilizer, thickener,and as a protective agent in oral drug delivery.

Solvents such as acetate, methanol, isopropanol, and ethyl acetate are used dissolve or disperse the polymer materials and apply them to the surface of the tablets and capsules.

Solvents

Solvents can be solid, liquid,or gas and are often used to dissolve, disperse, suspend, or extract other materials during pharmaceutical manufacturing. They can also be used as the medium in which the chemical reaction takes place to make APIs. To maintain a sterile environment and adhere to strict quality control standards, solvents such as isopropyl alcohol may be used to clean and disinfect surface areas and equipment.

Depending upon the manufacturing stage, the solvent being used can be either organic ( i.e., carbon-based), such as hexane, alcohols (including isopropyl, ethanol, and methanol), toluene, and acetone, among others; or inorganic solvents ( i.e., non-carbon-based), including water (the simplest and most abundant), ammonia, hydrogen fluoride, and sulfur dioxide.

Potential Safety Risks Involved with Solvent Use

While solvents are necessary components of the medicine formulation process, exposure to solvents is one of the most common hazards in the pharmaceutical production industry. Solvents can irritate the eyes and respiratory tract, cause damage to the liver, kidneys, heart, blood vessels, bone marrow, and the nervous system. Inhalation of some solvents may have a narcotic effect, causing fatigue, dizziness, unconsciousness, and even death.

Moreover, many of the organic solvents used in pharmaceutical manufacturing, such as hexane, acetone, methanol, isopropyl alcohol, ethanol, and toluene,are highly volatile, as well as flammable or combustible.

Combustible Gas Monitors Can Reduce Risk in Pharmaceutical Facilities Utilizing Solvents

Solvent vapors are very often flammable and, depending on the solvent, even explosive. It is critically important to understand the lower explosive limits (LEL) of the solvents being used, because LEL reflects the lowest concentration of gases or vapors in the air that could cause combustion in the presence of an ignition source, such as static electricity , heat, or flame.

Best practices call for combustible gas detectors to be installed in any area where flammable or combustible solvents are used or stored. In the event of a leak, and an accumulation of solvent vapors, an LEL gas detection monitor should activate visual and audible alarms, and turn on the ventilation system.

PureAire Monitors

PureAire Monitoring Systems’ line of LEL Combustible Gas Monitors is designed to meet the safety needs of pharmaceutical manufactures utilizing solvents. The Monitor is housed in a NEMA 4 explosion-proof enclosure suitable for Class 1, Groups B, C, and D, and Class 2, Groups E, F, and G. The enclosure is specifically designed to prevent an explosion. The Monitor’s durable, long-life LEL catalytic sensor will last 5+ years without needing to be replaced.

PureAire Monitors feature an easy to read screen, which displays current gas levels, for at-a-glance observation by employees, who derive peace of mind from the Monitor’s presence and reliable performance. In the event of a solvent leak, PureAire’s Monitors will set off alarms, complete with horns and flashing lights, alerting personnel to evacuate the area. Alarm signals can tie into automatic shut-off valves and ventilation systems when solvent levels reach an unsafe threshold.

Our LEL Combustible Gas monitor can connect to multi-channel controllers, a remote display, or into building systems themselves.