Wednesday, September 6, 2023

3D Metal Printing: Oxygen Analyzers Are Essential

 


Metal 3D printing, also known as additive manufacturing, provides for the creation of complex metal parts by layering metal powders and, depending on the application, selectively sintering, fusing, or melting the powders using a high-powered laser or electron beam. This process offers numerous advantages over traditional manufacturing methods, including reduced waste, increased design freedom to create complex components, and faster production times. The industry applications of metal 3D printing are vast and growing rapidly. Metal 3D printed components are used in aerospace (for lightweight components with complex designs), automotive (for customized parts and prototypes), medical (for implants and prosthetics), and even jewelry manufacturing. The ability to create intricate metal parts with high precision has opened up new possibilities across a variety of industries.

3D Metal Printing Requires Low to Ultra-Low Oxygen Environments

3D printing processes require inert, low to ultra-low oxygen (i.e., nearly oxygen-free) environments to protect the integrity of the finished printed parts. Undue exposure to oxygen, even in small amounts, can result in various defects, such as porosity, oxidation, corrosion, and reduced mechanical properties. Porosity refers to small voids or gaps within a printed part that can compromise its structural strength. Oxidation results in surface discoloration, weakened structural integrity, and compromised part performance. Reduced mechanical properties can result from brittleness or reduced tensile strength caused by excessive oxygen exposure. In addition, dust from the metal powders can be combustible when exposed to oxygen. Some metals, such as titanium and aluminum, can burn quickly, at extremely high temperatures and, in some cases, may cause violent explosions.

To create the desired low oxygen environments, 3D metal printing facilities utilize inert gases—typically argon or nitrogen—within their build chambers. These inert gases deplete oxygen from the build chambers, creating stable printing environments, preventing fire hazards by keeping combustible dust inert, and reducing irregularities and defective elements.

Oxygen Analyzers Help Prevent Product Impurities

Oxygen analyzers are critical to monitoring and regulating oxygen levels within the build chambers during 3D metal printing operations. By utilizing a top-quality oxygen analyzer, metal 3D printer operators are able to monitor and maintain optimal oxygen levels throughout the printing process. An O2 analyzer helps ensure that printed parts are free of imperfections and meet required design specifications. Analyzers continuously track oxygen levels to provide real-time data on oxygen concentration, allowing for immediate adjustments if necessary.

PureAire Trace Oxygen Analyzers

PureAire Monitoring Systems' industry-leading line of Trace Oxygen Analyzers includes products built with both low parts-per-million (ppm), or low percent level O2 sensors, which are designed to operate effectively under continuous inert environments. The Analyzers have remote sensors that are placed directly within the build chambers to continuously monitor oxygen levels.

Depending on user needs, our Trace Oxygen Analyzers can be programmed to detect ultra-low oxygen concentrations, from as low as .0.01 ppm up to 1,000 ppm, as well as higher (albeit still low) oxygen concentrations, from 0% up to 25%. They can operate in a vacuum of 20 Torr or less, and their zirconium oxide sensor cells do not need an oxygen reference gas for proper operation. In the event of undesired changes in oxygen levels, our Analyzers will sound alarms, alerting personnel to take corrective action.

PureAire's Trace Oxygen Analyzers measure oxygen 24/7, with no time-consuming maintenance required. Our long-lasting zirconium sensors provide accurate readings, without calibration, for up to 10 years.


Monday, July 31, 2023

Introducing PureAire Monitoring Systems latest product - the PureAire CloudConnect module

 


PureAire Monitoring Systems is excited to announce the launch of our latest offering—the PureAire CloudConnect module, provides for internet connectivity (with Cloud storage capabilities) for our full line of Oxygen and Carbon Dioxide Monitors, as well as our Toxic and LEL Combustible Gas Detectors. Our new CloudConnect module will send continuous gas concentration data to a secure Cloud storage space, and will provide immediate alarm and system information to customer-designated safety personnel via text, phone call, or email.

By utilizing the CloudConnect module, PureAire customers will be able to remotely monitor oxygen or other gas levels 24/7, and receive real-time alerts when gas concentration levels require attention, allowing them to identify and respond to potential safety concerns before accidents occur.

All monitoring data will be stored safely and securely in the Cloud, retrievable for viewing anytime, and configurable for compliance reporting.

Thursday, June 22, 2023

Biorepository Safety

 


What is a Biorepository?

A biorepository, or "biobank",  is a specialized facility designed to store, archive, and distribute biological samples for research or clinical purposes. Biorepositories house biological samples, such as blood, plasma, urine, saliva, tissues, DNA, and organs, among other specimen types, collected from consenting individuals. Critical associated information, including relevant health information about the donor, is linked to the sample, given a unique identifier, and uploaded into a laboratory information management system. Scientists use samples stored in biorepositories to research diseases and develop new treatments, drugs, and vaccines, among other applications. Biorepositories provide secure environments that help ensure the integrity of the samples stored within, and allow researchers an efficient way to access the samples they need for their studies.

How are Biological Samples Stored?

Cryopreservation is the most commonly used method for freezing and storing biological samples.  This method most often uses liquid nitrogen (LN2) to achieve the ultra-low temperature necessary for cryopreservation, usually between -80°C and -196°C. Biorepositories use cryogenic freezers and LN2  to achieve and maintain the super-cold temperatures required for long-term sample storage.

Biorepositories must rely on a continuous supply of LN2 to ensure that samples stay fully frozen in order to preserve their integrity and usability. Liquid nitrogen is typically supplied through liquid nitrogen generators or bulk tanks located outside the facility, or from cryogenic cylinders or Dewar vessels located inside near the freezers.

Liquid Nitrogen Safety - Oxygen Monitors Can Reduce Risk

Cryopreservation ensures that the samples remain viable for future use. However, since LN2 is an oxygen-depleting gas that is both odorless and colorless, absent appropriate monitoring, biorepository personnel would be unable to detect a liquid nitrogen leak if one were to occur in a gas cylinder or supply line. When there is not enough oxygen in the air, persons working in the area can become disoriented, lose consciousness, or even suffocate from lack of oxygen. Additionally, a liquid nitrogen leak could lead to the loss of its super-cooling properties, causing the temperature to rise inside the freezer, possibly causing catastrophic damage to the biological samples.

As such, best practice calls for oxygen deficiency monitors to be installed anywhere there is a risk of nitrogen gas leaks. The National Institutes of Health’s Design Requirements Manual stipulates that, to warn of oxygen depletion, oxygen monitoring equipment is to be provided in freezer rooms and other rooms where cryogenic fluids (including liquid nitrogen) are supplied or stored.

PureAire Monitors


PureAire Monitoring Systems’ Oxygen Deficiency Monitors continuously track levels of oxygen and will detect liquid nitrogen leaks before freezer failure jeopardizes either the integrity of stored samples or employee health. Built with zirconium oxide sensor cells to ensure longevity, PureAire’s O2 Monitors can last, trouble-free, for over 10 years under normal operating conditions.  In the event of an LN2 gas leak, and a decrease in oxygen to an unsafe level, our Monitor will set off an alarm, complete with horns and flashing lights, alerting employees to evacuate the affected area.

The Oxygen Monitors should be placed wherever liquid nitrogen is stored, and in all rooms and areas where nitrogen is used.

PureAire Oxygen Monitors measure oxygen 24/7, with no time-consuming maintenance or calibration required.

Each PureAire O2 Monitor has an easy to read screen, which displays current oxygen levels, for at-a-glance readings by biorepository personnel, who derive peace of mind from the Monitor’s presence and reliability.


Friday, April 28, 2023

Sterilizing Medical Devices Using Ethylene Oxide

 


According to the Centers for Disease Control and Prevention, 48.3 million procedures were performed at hospitals and ambulatory surgery centers in the United States in 2010. Healthcare providers and patient advocates understand that infection prevention requires meticulous sanitation and sterilization of all facilities, equipment, and instruments used in surgery settings. According to the World Health Organization, post-operative infections contribute to patients’ spending extra days in the hospital, at a cost of some $900 million per year. Medical devices that are sterilized to eliminate potentially harmful pathogens and microorganisms are critical to delivering safe and cost-effective patient outcomes.

Medical Device Sterilization

Sterilization is to thoroughly clean and disinfect medical and surgical devices in order to prevent infection by killing any microorganisms (i.e., bacteria, viruses, or fungi) that might otherwise be present in the devices, and that could pose significant risks to patients.

There are a variety of sterilization methodologies in use in the healthcare industry (including, among others, steam under pressure/autoclave, dry heat, ultraviolet radiation, and gas vapors), and the most effective sterilization process in a given situation may depend on the specific type of device subject to sterilization. That is, sterilization of medical and surgical devices works best when proper techniques are used on the appropriate devices.

By way of example, high-temperature steam autoclave is the oldest sterilization technique in the medical equipment industry, and it is extremely safe, but it is not well-suited for instruments that are sensitive to prolonged exposure to heat and/or moisture. For instance, the buildup of water droplets (as a result of high-temperature steam autoclave sterilization) inside device components can corrode materials that should not be exposed to water. Likewise, instruments with plastic or electronic components could become damaged when exposed to high temperatures and steam

Sterilization Using Ethylene Oxide Gas

The use of ethylene oxide gas (EtO) has become a practical alternative to medical device sterilization via steam autoclave.

EtO was first used as a chemical sterilant in the 1950s and, since then, low-temperature EtO gas sterilization has become one of the more commonly used sterilization methods in the healthcare industry.  According to the Ethylene Oxide Sterilization Association, ethylene oxide is used to sterilize over 20 billion medical devices each year in the U.S., representing over 50% of the medical devices and nearly 90% of the surgical kits used by the healthcare industry.

EtO is a preferred sterilization method in large part because, given its low-temperature application, it will not damage medical equipment, complex implantable devices, surgical kits, and other instruments that require sterilization. Ethylene oxide has a wide range of material compatibility; it is suitable for use on materials that cannot tolerate heat, moisture, or abrasive chemicals, such as electronics, plastic, paper, and rubber, and the gas can penetrate small spaces inside the devices, and can even sterilize  medical instruments that have  already been packaged in plastic.

Protecting Employees Working in EtO Device Sterilization Environments

While ethylene oxide sterilization is widely used in sterilizing medical and surgical devices, there are concerns about the potential negative effects on employees working with EtO, since personnel and property are exposed to the possibility of leaks from gas supply lines and storage containers. Long-term exposure to ethylene oxide can irritate the eyes, skin, nose, throat, and lungs, and harm the brain and nervous system, and it has been linked to cancer.

Ethylene oxide is a highly combustible, flammable, and colorless gas that has a sweet, ether-like odor at toxic levels. However, the odor’s presence and strength cannot be relied upon to ensure safety; therefore, absent appropriate monitoring to detect that a leak or an or an accumulation of ethylene oxide has occurred, sterilization employees could face serious health risks from working in enclosed, poorly ventilated areas.

Best practices when working with EtO include, but not limited to, the use of goggles, protective clothing, and the installation of gas monitoring systems. The National Fire Protection Association (NFPA) recommends installing gas detection monitors in all areas where EtO is used. According to the NFPA, the gas monitors should provide audible and visual warnings to indicate when concentrations of ethylene oxide exceed a level of 25% of the lower limit of flammability of ethylene oxide. Furthermore, the gas detection system should automatically shut off the flow of gas and automatically turn on the buildings’ ventilation system.

PureAire Monitors

PureAire Monitoring System's ST-48 Ethylene Oxide (EtO) Combustible Gas Monitor offers continuous gas monitoring at medical sterilization facilities. The monitor is housed in a NEMA 7 explosion proof enclosure specifically designed to prevent an explosion and suitable for Class 1, Divisions 1 & 2, Groups A,B, C, and D.

PureAire’s EtO Combustible Gas Monitor features an easy to read screen, whichdisplays current gas levels for at-a-glance observation by employees, who derive peace of mind from the monitor’s presence and reliable performance. In the event that ethylene oxide reaches an unsafe level, PureAire’s monitors will set offalarms, complete with horns and flashing lights, alerting personnel to evacuate the area. At the same time, the monitors can be programmed to turn off the flow of gas, and turn on the ventilation system.