Tuesday, November 29, 2022

Liquid Nitrogen Dosing – Supporting Non-Carbonated Beverage Packaging, One Bottle At A Time

 


To create that perfect glass of wine, refreshing sip of water, or other non-carbonated drinks of choice, beverage producers often turn to liquid nitrogen (LN2).Liquid nitrogen fills an important role in the bottling and canning of non-carbonated beverages.

What is Liquid Nitrogen?

Liquid nitrogen is a cryogenic, liquefied form of nitrogen (N). Nitrogen is an oxygen-depleting gas that is a liquid at temperatures below −195.8° Celsius(−320.4° Fahrenheit).  At those low temperatures, liquid nitrogen is so cold that it immediately freezes. When LN2 is exposed to the air and begins to warm, it vaporizes, changing from its liquid state back to nitrogen gas.

The properties of LN2 are of particular importance to bottlers. Liquid nitrogen is an inert, odorless, and colorless gas that does not react to other substances or add unwanted flavors, odors, or colors to beverages. This ensures that products taste as they should.

Liquid Nitrogen Dosing

Liquid nitrogen dosing is a process by which, after filling the beverage container, and just before sealing it, beverage packagers dispense a precise amount of LN2 into the space (the “headspace”) between the product and the top of the bottle or can. Exposure to ambient air causes the liquid nitrogen to warm, and vaporize into nitrogen, which displaces residual oxygen and pressurizes the container.

Displacing or removing oxygen from beverage containers prevents unwanted oxidation, the presence of which can negatively impact product quality and shorten product shelf-life. Moreover, pressurizing plastic bottles and aluminum cans by introducing liquid nitrogen may improve the structural integrity of the beverage containers, and their improved durability might enable bottlers to use lighter, thinner containers, which could be both economical and environmentally friendly.

Liquid Nitrogen Safety

Liquid nitrogen usage, though important for bottling and packaging, is not without risk.

When liquid nitrogen is exposed to air (including during dosing), it evaporates, changing from a liquid to an oxygen-depleting nitrogen gas. Oxygen deprivation can put employees in real danger if there are leaks from LN2 dosing equipment or on-site gas cylinders. In the event of a liquid nitrogen leak, workers could become disoriented, lose consciousness, or even suffocate from breathing oxygen-deficient air. Since LN2 is both scentless and colorless, workers would, in the absence of appropriate monitoring, have no way of knowing that there has been a liquid nitrogen leak.

However, by utilizing a PureAire oxygen deficiency monitor, personnel can safely track oxygen levels and detect leaks before workers’ health is jeopardized. Best practice calls for oxygen deficiency monitors to be installed anywhere there is a risk of liquid nitrogen gas leaks. Monitors should be placed wherever liquid nitrogen is stored, and in all areas where liquid nitrogen is used. The monitoring equipment should include visual and audible alarms that would be activated in the event of liquid nitrogen leaks and a decrease in oxygen levels.

PureAire Oxygen Deficiency Monitors

PureAire Monitoring Systems’ complete line of Oxygen Deficiency Monitors offers thorough air monitoring, with no time-consuming maintenance or calibration required. A screen displays current oxygen levels for at-a-glance reading by employees, who derive peace of mind from the Monitor’s presence and reliable performance.

In the event of a  liquid nitrogen leak, and a decrease in oxygen to an unsafe level, PureAire’s Monitor will set off an alarm, complete with horns and flashing lights, alerting personnel to evacuate the area.

PureAire’s Monitor will remain accurate at extremely low temperatures. That makes the Monitor ideally suited for facilities using liquid nitrogen, such as bottling and packaging plants. Built with zirconium oxide sensor cells to ensure longevity, PureAire’s Oxygen Monitors can last, trouble-free, for over 10 years under normal operating conditions.


Thursday, November 24, 2022

PureAire Introduces New 0-10ppm Trace Oxygen Analyzer, with Low ppb Accuracy

 

PureAire Monitoring Systems is excited to add its 0-10 parts per million(ppm) Trace Oxygen Analyzer to our full line of Oxygen Deficiency Monitors, Carbon Dioxide Monitors, Toxic Gas Detectors, and LEL Gas Monitors. The new Analyzer measures trace levels of oxygen across a wide variety of applications where precise, ultra-low gas concentration monitoring is critical to ensure safety and product quality.

Our new Trace Oxygen Analyzer provides accurate measurements of trace oxygen levels from 0-10ppm. The Analyzer’s repeatability and accuracy are <± 2% parts per billion (ppb) of the calibrated range. It is well suited for the semiconductor industry, including wafer transfer tools, process chambers, and Organic Light Emitting Diode (OLED) manufacturers, as well as 3D printing, pharmaceutical development, manufacturing, and packaging. PureAire's low ppm and ppb sensors are ideal for any applications where inert gases, including, but not limited to, nitrogen, helium, and argon are used to displace oxygen as part of the oxidation-reduction process.

PureAire’s Trace Oxygen Analyzer is designed for continuous monitoring where inert gases are used to create environments in which there is little to no oxygen present. It has a remote sensor that, with the use of a KF-type vacuum fitting, mounts directly into gloveboxes or process/vacuum chambers, and it allows for monitoring up to 10 feet away from the Analyzer.

The Near Absence of Oxygen Helps Protect Product Integrity in a Variety of Industrial Applications

The presence of oxygen in certain manufacturing processes can negatively affect the integrity of products. For instance:

  • Semiconductor manufacturers seek to eliminate oxygen during key processes to protect the quality and reliability of sensitive components. The presence of trace impurities can result in the loss of whole batches of wafers.
  • High-purity gas systems, laboratories, and pharmaceutical facilities require sterile, oxygen-free conditions in order to test, manufacture, package, and deliver pure, contaminant-free gases, drugs, and medicines.
  • Food packagers and bottlers know that residual oxygen can promote the growth of microorganisms such as mold and other pathogens, potentially leading to foul tastes, off-textures, and shortened shelf-life of food and beverage products and, in certain instances, food-borne illnesses.

PureAire Trace Oxygen Analyzer

PureAire’s Trace Oxygen Analyzer should be used in any location where precise measurements of oxygen levels need to be maintained, and where the presence of oxygen could negatively affect product integrity.

Our Analyzer responds in seconds to changes in oxygen levels, and in the event of an unacceptable deviation in required O2 levels, will set off an alarm, complete with horns and flashing lights, alerting personnel to take corrective action.

PureAire’s durable, non-depleting, long-life zirconium oxide sensor will remain accurate over a wide range of temperature and humidity levels, and it will last for 10+ years in a normal environment without needing to be replaced.